Search Options

Display Count
Sort
Preferred Language
Label
Advanced Search

Results 1861 - 1870 of over 10,000 for 1 (0.76 seconds)

  1. Manifold learning — scikit-learn 1.8.0 do...

    Examples concerning the sklearn.manifold module. Comparison of Manifold Learning methods Manifold Learning methods on a severed sphere Manifold learning on handwritten digits: Locally Linear Embedd...
    scikit-learn.org/stable/auto_examples/manifold/index.html
    Mon Feb 02 09:23:44 GMT 2026
      75.9K bytes
      Cache
     
  2. Neural Networks — scikit-learn 1.8.0 docu...

    Examples concerning the sklearn.neural_network module. Compare Stochastic learning strategies for MLPClassifier Restricted Boltzmann Machine features for digit classification Varying regularization...
    scikit-learn.org/stable/auto_examples/neural_networks/index.html
    Mon Feb 02 09:23:44 GMT 2026
      75.5K bytes
      Cache
     
  3. sklearn.dummy — scikit-learn 1.8.0 docume...

    Dummy estimators that implement simple rules of thumb. User guide. See the Metrics and scoring: quantifying the quality of predictions section for further details.
    scikit-learn.org/stable/api/sklearn.dummy.html
    Mon Feb 02 09:23:44 GMT 2026
      115.1K bytes
      Cache
     
  4. sklearn.kernel_approximation — scikit-lea...

    Approximate kernel feature maps based on Fourier transforms and count sketches. User guide. See the Kernel Approximation section for further details.
    scikit-learn.org/stable/api/sklearn.kernel_approximation.html
    Mon Feb 02 09:23:44 GMT 2026
      116.6K bytes
      Cache
     
  5. sklearn.naive_bayes — scikit-learn 1.8.0 ...

    Naive Bayes algorithms. These are supervised learning methods based on applying Bayes’ theorem with strong (naive) feature independence assumptions. User guide. See the Naive Bayes section for furt...
    scikit-learn.org/stable/api/sklearn.naive_bayes.html
    Mon Feb 02 09:23:44 GMT 2026
      116.4K bytes
      Cache
     
  6. sklearn.multiclass — scikit-learn 1.8.0 d...

    Multiclass learning algorithms. one-vs-the-rest / one-vs-all, one-vs-one, error correcting output codes. The estimators provided in this module are meta-estimators: they require a base estimator to...
    scikit-learn.org/stable/api/sklearn.multiclass.html
    Mon Feb 02 09:23:44 GMT 2026
      116.9K bytes
      Cache
     
  7. sklearn.svm — scikit-learn 1.8.0 document...

    Support vector machine algorithms. User guide. See the Support Vector Machines section for further details.
    scikit-learn.org/stable/api/sklearn.svm.html
    Mon Feb 02 09:23:44 GMT 2026
      116.7K bytes
      Cache
     
  8. sklearn.mixture — scikit-learn 1.8.0 docu...

    Mixture modeling algorithms. User guide. See the Gaussian mixture models section for further details.
    scikit-learn.org/stable/api/sklearn.mixture.html
    Mon Feb 02 09:23:44 GMT 2026
      114.9K bytes
      Cache
     
  9. sklearn.random_projection — scikit-learn ...

    Random projection transformers. Random projections are a simple and computationally efficient way to reduce the dimensionality of the data by trading a controlled amount of accuracy (as additional ...
    scikit-learn.org/stable/api/sklearn.random_projection.html
    Mon Feb 02 09:23:44 GMT 2026
      116.9K bytes
      Cache
     
  10. One-Class SVM versus One-Class SVM using Stocha...

    reshape ( - 1 , 1 ), yy . ravel () . reshape ( - 1 , 1 )], axis...reshape ( - 1 , 1 ), yy . ravel () . reshape ( - 1 , 1 )], axis...
    scikit-learn.org/stable/auto_examples/linear_model/plot_sgdocsvm_vs_ocsvm.html
    Mon Feb 02 09:23:44 GMT 2026
      122.5K bytes
      Cache
     
Back to Top