- Sort Score
- Result 10 results
- Languages All
- Labels All
Results 141 - 150 of 381 for f (0.1 sec)
-
LeaveOneOut — scikit-learn 1.7.2 documentation
print ( f "Fold { i } :" ) ... print ( f " Train: index=...train_index } " ) ... print ( f " Test: index= { test_index }...scikit-learn.org/stable/modules/generated/sklearn.model_selection.LeaveOneOut.html -
PredefinedSplit — scikit-learn 1.7.2 documentation
print ( f "Fold { i } :" ) ... print ( f " Train: index=...train_index } " ) ... print ( f " Test: index= { test_index }...scikit-learn.org/stable/modules/generated/sklearn.model_selection.PredefinedSplit.html -
Install Elasticsearch with RPM | Elastic Docs
www.elastic.co/docs/deploy-manage/deploy/self-managed/install-elasticsearch-with-rpm -
L1-based models for Sparse Signals — scikit-lea...
" f "ARD $R^2$: { r2_score_ard : .3f } , " f "ElasticNet...( X_train , y_train ) print ( f "Lasso fit done in { ( time ()...scikit-learn.org/stable/auto_examples/linear_model/plot_lasso_and_elasticnet.html -
LeavePGroupsOut — scikit-learn 1.7.2 documentation
print ( f "Fold { i } :" ) ... print ( f " Train: index=...train_index ] } " ) ... print ( f " Test: index= { test_index }...scikit-learn.org/stable/modules/generated/sklearn.model_selection.LeavePGroupsOut.html -
Precision-Recall — scikit-learn 1.7.2 documenta...
positives ( \(F_p\) ). \[P = \frac{T_p}{T_p+F_p}\] Recall ( \(R\)...negatives ( \(F_n\) ). \[R = \frac{T_p}{T_p + F_n}\] The precision-recall...scikit-learn.org/stable/auto_examples/model_selection/plot_precision_recall.html -
7.1. Pipelines and composite estimators — sciki...
'w' ) as f : ... f . write ( estimator_html_repr...TransformedTargetReg(...) >>> print ( f "R2 score: { regr . score ( X_test...scikit-learn.org/stable/modules/compose.html -
Combine predictors using stacking — scikit-lear...
{ key : ( f " { np . abs ( np . mean ( scores [ f 'test_ { value...])) : .2f } +- " f " { np . std ( scores [ f 'test_ { value }...scikit-learn.org/stable/auto_examples/ensemble/plot_stack_predictors.html -
Illustration of prior and posterior Gaussian pr...
label = f "Sampled function # { idx + 1...plt . tight_layout () print ( f "Kernel parameters before fit:...scikit-learn.org/stable/auto_examples/gaussian_process/plot_gpr_prior_posterior.html -
Model-based and sequential feature selection — ...
time () print ( f " \n tol: { tol } " ) print ( f "Features selected:...X , y ) toc = time () print ( f "Features selected by SelectFromModel:...scikit-learn.org/stable/auto_examples/feature_selection/plot_select_from_model_diabetes.html