Search Options

Results per page
Sort
Preferred Languages
Labels
Advance

Results 141 - 150 of 1,972 for = (0.09 sec)

  1. RadiusNeighborsRegressor — scikit-learn 1.6.1 d...

    leaf_size = 30 , p = 2 , metric = 'minkowski' , metric_params = None...radius = 1.0 , * , weights = 'uniform' , algorithm = 'auto' ,...
    scikit-learn.org/stable/modules/generated/sklearn.neighbors.RadiusNeighborsRegressor.html
    Thu Apr 03 21:44:37 UTC 2025
      150.9K bytes
      Cache
     
  2. Gaussian processes on discrete data structures ...

    width = 0.2 , color = "r" , alpha = 1 , label = "training"...)], s = 100 , marker = "x" , facecolor = "b" , linewidth = 2 ,...
    scikit-learn.org/stable/auto_examples/gaussian_process/plot_gpr_on_structured_data.html
    Thu Apr 03 21:44:38 UTC 2025
      120.7K bytes
      1 views
      Cache
     
  3. Robust linear estimator fitting — scikit-learn ...

    ( 42 ) X = np . random . normal ( size = 400 ) y = np . sin (...( size = 200 ) y_test = np . sin ( X_test ) X_test = X_test [:,...
    scikit-learn.org/stable/auto_examples/linear_model/plot_robust_fit.html
    Thu Apr 03 21:44:38 UTC 2025
      101.5K bytes
      Cache
     
  4. 6.3. Preprocessing data — scikit-learn 1.6.1 do...

    axis = 0 )) / ( X . max ( axis = 0 ) - X . min ( axis = 0 ))...output_distribution = 'normal' , random_state = 0 ) >>> X_trans = quantile_transformer...
    scikit-learn.org/stable/modules/preprocessing.html
    Thu Apr 03 21:44:38 UTC 2025
      197.2K bytes
      Cache
     
  5. SGD: Penalties — scikit-learn 1.6.1 documentation

    inline = 1 , fontsize = 18 , fmt = { 1.0 : "L2" }, manual = [( -...inline = 1 , fontsize = 18 , fmt = { 1.0 : "L1" }, manual = [( -...
    scikit-learn.org/stable/auto_examples/linear_model/plot_sgd_penalties.html
    Thu Apr 03 21:44:37 UTC 2025
      92.4K bytes
      Cache
     
  6. Displaying estimators and complex pipelines — s...

    lr = LogisticRegression ( penalty = "l1" ) print (...num_proc = make_pipeline ( SimpleImputer ( strategy = "median"...
    scikit-learn.org/stable/auto_examples/miscellaneous/plot_estimator_representation.html
    Thu Apr 03 21:44:37 UTC 2025
      111.8K bytes
      Cache
     
  7. SGD: convex loss functions — scikit-learn 1.6.1...

    ): z = y_pred * y_true loss = - 4 * z loss [ z >= - 1 ] = ( 1...color = "darkorchid" , lw = lw , linestyle = "--" , label = "Modified...
    scikit-learn.org/stable/auto_examples/linear_model/plot_sgd_loss_functions.html
    Thu Apr 03 21:44:38 UTC 2025
      92.4K bytes
      Cache
     
  8. 「【愛媛県松山市】デザインセミナーの講師募集」の仕事依頼【ジョブハブ】

    ・参加者は本事業に参加されている方がメインです。...【報酬】 20000円(税込)※交通費含む 詳細情報 JobID クライアント名...
    jobhub.jp/jobs/25517
    Fri Apr 04 00:29:51 UTC 2025
      31K bytes
      Cache
     
  9. Plot different SVM classifiers in the iris data...

    C = C ), svm . SVC ( kernel = "poly" , degree = 3 , gamma = "auto"...( kernel = "linear" , C = C ), svm . LinearSVC ( C = C , max_iter...
    scikit-learn.org/stable/auto_examples/svm/plot_iris_svc.html
    Thu Apr 03 21:44:38 UTC 2025
      92.8K bytes
      Cache
     
  10. Post-hoc tuning the cut-off point of decision f...

    ncols = 2 , figsize = ( 12 , 4 ), sharex = True , sharey = True...diabetes = fetch_openml ( data_id = 37 , as_frame = True , parser...
    scikit-learn.org/stable/auto_examples/model_selection/plot_tuned_decision_threshold.html
    Thu Apr 03 21:44:37 UTC 2025
      124.8K bytes
      Cache
     
Back to top