- Sort Score
- Num 10 results
- Language All
- Labels All
Results 1371 - 1380 of 9,498 for 2 (0.95 seconds)
-
메모리 설정
export FESS_HEAP_SIZE = 2 g 단위: m : 메가바이트 g : 기가바이트 RPM/DEB.../etc/sysconfig/fess 를 편집합니다. FESS_HEAP_SIZE = 2 g DEB 패키지의 경우 /etc/default/fess...fess.codelibs.org/ko/15.4/config/setup-memory.html -
업그레이드 절차
2/fess-15.3.2.tar.gz $ tar -xzf fess-15.3.2.tar.gz 이전...-Uvh fess-15.3.2.rpm # DEB $ sudo dpkg -i fess-15.3.2.deb 참고 설정 파일(...fess.codelibs.org/ko/15.3/install/upgrade.html -
Evaluate the performance of a classifier with C...
set_printoptions ( precision = 2 ) # Plot non-normalized confusion...n_redundant = 0 , n_classes = 2 , random_state = 42 , ) X_train...scikit-learn.org/stable/auto_examples/model_selection/plot_confusion_matrix.html -
IBM Environmental Intelligence - IBM Developer
developer.ibm.com/components/ibm-environmental-intelligence -
IBM Maximo Application Suite - IBM Developer
developer.ibm.com/components/maximo -
MultiTaskElasticNet — scikit-learn 1.8.0 ...
[ 2 , 2 ]], [[ 0 , 0 ], [ 1 , 1 ], [ 2 , 2 ]]) Multi...is: ( 1 / ( 2 * n_samples )) * || Y - XW || _Fro ^ 2 + alpha *...scikit-learn.org/stable/modules/generated/sklearn.linear_model.MultiTaskElasticNet.html -
PartialDependenceDisplay — scikit-learn 1...
2 Release Highlights for scikit-learn 1.2 Release Highlights...‘both’) is not a valid option for 2-ways interactions plot. As a result,...scikit-learn.org/stable/modules/generated/sklearn.inspection.PartialDependenceDisplay.html -
RandomizedSearchCV — scikit-learn 1.8.0 d...
2 0.84 … 3 ‘rbf’ 0.3 0.70 … 2 will be represented...verbose = 0 , pre_dispatch = '2*n_jobs' , random_state = None...scikit-learn.org/stable/modules/generated/sklearn.model_selection.RandomizedSearchCV.html -
Procédure de mise à niveau
2/fess-15.3.2.tar.gz $ tar -xzf fess-15.3.2.tar.gz Copiez...-Uvh fess-15.3.2.rpm # DEB $ sudo dpkg -i fess-15.3.2.deb Note Les...fess.codelibs.org/fr/15.3/install/upgrade.html -
lars_path — scikit-learn 1.8.0 documentation
float64(2.220446049250313e-16) , copy_Gram...case method=’lasso’ is: ( 1 / ( 2 * n_samples )) * || y - Xw ||^...scikit-learn.org/stable/modules/generated/sklearn.linear_model.lars_path.html