- Sort Score
- Num 10 results
- Language All
- Labels All
Results 1201 - 1210 of over 10,000 for 2 (0.17 seconds)
-
데이터 저장소 크롤링
) VALUES ( '타이틀 2' , '콘텐츠 2 입니다.' , '34.701909'...설정합니다. 1 , 타이틀 1 , 테스트1입니다 . 2 , 타이틀 2 , 테스트2입니다 . 3 , 타이틀 3 , 테스트3입니다...fess.codelibs.org/ko/15.3/admin/dataconfig-guide.html -
Development
New Issue Issue Templates Step 2: Create Branch Branch Naming Convention...1: Understand the Project Step 2: Find an Issue Step 3: Set Up...fess.codelibs.org/development.html -
Introduction to IBM Mono2Micro - IBM Developer
applications into microservices Likes 2 Save IBM Mono2Micro , offered...November 2025 Time to complete: 2 hours Legend Like Save Previous...developer.ibm.com/learningpaths/intro-ibm-mono2micro -
Plot the support vectors in LinearSVC — s...
centers = 2 , random_state = 0 ) plt . figure...support_vector_indices ] plt . subplot ( 1 , 2 , i + 1 ) plt . scatter ( X [:,...scikit-learn.org/stable/auto_examples/svm/plot_linearsvc_support_vectors.html -
Flux de travail de développement
Vérification/création d'un problème ↓ 2. Création d'une branche ↓...Étapes de reproduction 1. ... 2. ... 3. ... ## Comportement attendu...fess.codelibs.org/fr/dev/workflow.html -
개발
확인 새로운 Issue 작성 Issue 템플릿 Step 2: 브랜치 생성 브랜치 명명 규칙 브랜치 생성 절차 Step...번째 기여 Step 1: 프로젝트 이해하기 Step 2: Issue 찾기 Step 3: 개발 환경 설정 Step...fess.codelibs.org/ko/development.html -
VarianceThreshold — scikit-learn 1.8.0 do...
scikit-learn.org/stable/modules/generated/sklearn.feature_selection.VarianceThreshold.html -
bootstrap.js
A=v/2-y/2,T=m[_],C=E-g[p]-m[b],O=E/2-g[p]/2+A,x=X(T,O,...x+i.width/2-a.width/2,p=i.y+i.height/2-a.height/2;switch(d){case...scikit-learn.org/stable/_static/scripts/bootstrap.js -
average_precision_score — scikit-learn 1....
2 , 2 ]) >>> y_scores = np...], ... [ 0.2 , 0.3 , 0.5 ], ... [ 0.4 , 0.4 , 0.2 ], ... [ 0.1...scikit-learn.org/stable/modules/generated/sklearn.metrics.average_precision_score.html -
Normalizer — scikit-learn 1.8.0 documenta...
2 , 2 ], ... [ 1 , 3 , 9 , 3 ], ......transform ( X ) array([[0.8, 0.2, 0.4, 0.4], [0.1, 0.3, 0.9, 0.3],...scikit-learn.org/stable/modules/generated/sklearn.preprocessing.Normalizer.html