- Sort Score
- Num 10 results
- Language All
- Labels All
Results 1161 - 1170 of over 10,000 for 2 (0.36 seconds)
-
PredefinedSplit — scikit-learn 1.8.0 docu...
2 ], [ 3 , 4 ], [ 1 , 2 ], [ 3 , 4 ]]) >>>...index=[1 2 3] Test: index=[0] Fold 1: Train: index=[0 2] Test:...scikit-learn.org/stable/modules/generated/sklearn.model_selection.PredefinedSplit.html -
index.css
--sk-landing-bg-2: var(--sk-cyan-shades-2); --sk-landing-bg-3:...var(--sk-cyan-shades-3); --sk-landing-bg-2: var(--sk-cyan); --sk-landing-bg-3:...scikit-learn.org/stable/_static/styles/index.css -
Lars — scikit-learn 1.8.0 documentation
float \(R^2\) of self.predict(X) w.r.t. y . Notes The \(R^2\) score...n_nonzero_coefs = 500 , eps = np.float64(2.220446049250313e-16) , copy_X...scikit-learn.org/stable/modules/generated/sklearn.linear_model.Lars.html -
Manage data from the command line | Elastic Docs
quot;total":2,"successful":2,"failed&quo...rds":{"total":2,"successful":1,&quo...www.elastic.co/docs/manage-data/data-store/manage-data-from-the-command-line -
HistGradientBoostingRegressor — scikit-le...
float \(R^2\) of self.predict(X) w.r.t. y . Notes The \(R^2\) score...scikit-learn 1.2 Release Highlights for scikit-learn 1.2 Release Highlights...scikit-learn.org/stable/modules/generated/sklearn.ensemble.HistGradientBoostingRegressor.html -
LocalOutlierFactor — scikit-learn 1.8.0 d...
array([[2]])) As you can see, it returns [[0.5]], and [[2]], which..., metric = 'minkowski' , p = 2 , metric_params = None , contamination...scikit-learn.org/stable/modules/generated/sklearn.neighbors.LocalOutlierFactor.html -
Understanding the decision tree structure ̵...
3] = 2.4) > 0.800000011920929) decision node 2 : (X_test[0,...min_samples_split: int or float, default=2 The minimum number of samples...scikit-learn.org/stable/auto_examples/tree/plot_unveil_tree_structure.html -
Tweedie regression on insurance claims — ...
9900 2.015718e+02 2.015412e+02 2.015342e+02 2.015600e+02...abs. error 2.730129e+02 2.722124e+02 2.740176e+02 2.731633e+02...scikit-learn.org/stable/auto_examples/linear_model/plot_tweedie_regression_insurance_claims.html -
Plot classification boundaries with different S...
2 , 0.5 ], [ 0.2 , - 2.0 ], [ 0.5 , - 2.4 ], [ 0.2 , - 2.3...[ - 1.3 , - 1.2 ], [ - 1.1 , - 0.2 ], [ - 1.2 , - 0.4 ], [ -...scikit-learn.org/stable/auto_examples/svm/plot_svm_kernels.html -
indexable — scikit-learn 1.8.0 documentation
2 , 3 ], np . array ([ 2 , 3 , 4 ]), None ,...indexable ( * iterables ) [[1, 2, 3], array([2, 3, 4]), None, <...Sparse...dtype...scikit-learn.org/stable/modules/generated/sklearn.utils.indexable.html