Search Options

Results per page
Sort
Preferred Languages
Labels
Advance

Results 1121 - 1130 of 3,487 for 1 (0.08 sec)

  1. Visualizing cross-validation behavior in scikit...

    scikit-learn 1.4 Release Highlights for scikit-learn 1.4 Gallery...10 ) percentiles_classes = [ 0.1 , 0.3 , 0.6 ] y = np . hstack...
    scikit-learn.org/stable/auto_examples/model_selection/plot_cv_indices.html
    Fri Nov 01 07:27:39 UTC 2024
      115.5K bytes
      Cache
     
  2. check_random_state — scikit-learn 1.5.2 documen...

    Gallery examples: Empirical evaluation of the impact of k-means initialization MNIST classification using multinomial logistic + L1 Manifold Learning methods on a severed sphere Face completion wit...
    scikit-learn.org/stable/modules/generated/sklearn.utils.check_random_state.html
    Wed Oct 30 20:01:23 UTC 2024
      109.2K bytes
      Cache
     
  3. sklearn.feature_selection — scikit-learn 1.5.2 ...

    Feature selection algorithms. These include univariate filter selection methods and the recursive feature elimination algorithm. User guide. See the Feature selection section for further details.
    scikit-learn.org/stable/api/sklearn.feature_selection.html
    Fri Nov 01 07:27:40 UTC 2024
      120.5K bytes
      Cache
     
  4. sklearn.neural_network — scikit-learn 1.5.2 doc...

    Models based on neural networks. User guide. See the Neural network models (supervised) and Neural network models (unsupervised) sections for further details.
    scikit-learn.org/stable/api/sklearn.neural_network.html
    Fri Nov 01 07:27:41 UTC 2024
      114.3K bytes
      Cache
     
  5. sklearn.model_selection — scikit-learn 1.5.2 do...

    Tools for model selection, such as cross validation and hyper-parameter tuning. User guide. See the Cross-validation: evaluating estimator performance, Tuning the hyper-parameters of an estimator, ...
    scikit-learn.org/stable/api/sklearn.model_selection.html
    Fri Nov 01 07:27:39 UTC 2024
      128K bytes
      Cache
     
  6. get_data_home — scikit-learn 1.5.2 documentation

    Gallery examples: Out-of-core classification of text documents
    scikit-learn.org/stable/modules/generated/sklearn.datasets.get_data_home.html
    Fri Nov 01 07:27:38 UTC 2024
      107.1K bytes
      Cache
     
  7. load_sample_images — scikit-learn 1.5.2 documen...

    Skip to main content Back to top Ctrl + K GitHub load_sample_images # sklearn.datasets. load_sample_images ( ) [sourc...
    scikit-learn.org/stable/modules/generated/sklearn.datasets.load_sample_images.html
    Fri Nov 01 07:27:40 UTC 2024
      105.6K bytes
      Cache
     
  8. make_s_curve — scikit-learn 1.5.2 documentation

    Gallery examples: Comparison of Manifold Learning methods t-SNE: The effect of various perplexity values on the shape
    scikit-learn.org/stable/modules/generated/sklearn.datasets.make_s_curve.html
    Fri Nov 01 07:27:39 UTC 2024
      107.8K bytes
      Cache
     
  9. enable_iterative_imputer — scikit-learn 1.5.2 d...

    Enables IterativeImputer The API and results of this estimator might change without any deprecation cycle. Importing this file dynamically sets IterativeImputer as an attribute of the impute module:
    scikit-learn.org/stable/modules/generated/sklearn.experimental.enable_iterative_imputer.html
    Fri Nov 01 07:27:40 UTC 2024
      103.6K bytes
      Cache
     
  10. Comparing random forests and the multi-output m...

    RandomState ( 1 ) X = np . sort ( 200 * rng . rand ( 600 , 1 ) - 100...( y_test [:, 0 ], y_test [:, 1 ], edgecolor = "k" , c = "navy"...
    scikit-learn.org/stable/auto_examples/ensemble/plot_random_forest_regression_multioutput.html
    Fri Nov 01 07:27:40 UTC 2024
      93.9K bytes
      Cache
     
Back to top