Search Options

Results per page
Sort
Preferred Languages
Labels
Advance

Results 1111 - 1120 of 2,024 for = (0.91 sec)

  1. make_regression — scikit-learn 1.7.1 documentation

    tail_strength = 0.5 , noise = 0.0 , shuffle = True , coef = False , random_state...n_samples = 100 , n_features = 100 , * , n_informative = 10 , n_targets...
    scikit-learn.org/stable/modules/generated/sklearn.datasets.make_regression.html
    Mon Aug 25 13:49:24 UTC 2025
      119.8K bytes
      Cache
     
  2. Column Transformer with Heterogeneous Data Sour...

    random_state = 1 , subset = "train" , categories = categories ,...y_test = fetch_20newsgroups ( random_state = 1 , subset = "test"...
    scikit-learn.org/stable/auto_examples/compose/plot_column_transformer.html
    Mon Aug 25 13:49:18 UTC 2025
      107.7K bytes
      Cache
     
  3. Recursive feature elimination with cross-valida...

    n_informative = 3 , n_redundant = 2 , n_repeated = 0 , n_classes = 8 ,..., y = make_classification ( n_samples = 500 , n_features = n_features...
    scikit-learn.org/stable/auto_examples/feature_selection/plot_rfe_with_cross_validation.html
    Mon Aug 25 13:49:23 UTC 2025
      98.7K bytes
      Cache
     
  4. LinearSVR — scikit-learn 1.7.1 documentation

    epsilon = 0.0 , tol = 0.0001 , C = 1.0 , loss = 'epsilon_insensitive'...fit_intercept = True , intercept_scaling = 1.0 , dual = 'auto' , verbose...
    scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVR.html
    Mon Aug 25 13:49:18 UTC 2025
      143.4K bytes
      Cache
     
  5. IterativeImputer — scikit-learn 1.7.1 documenta...

    estimator = None , * , missing_values = nan , sample_posterior = False...max_iter = 10 , tol = 0.001 , n_nearest_features = None , initial_strategy...
    scikit-learn.org/stable/modules/generated/sklearn.impute.IterativeImputer.html
    Mon Aug 25 13:49:19 UTC 2025
      151.5K bytes
      Cache
     
  6. LinearSVC — scikit-learn 1.7.1 documentation

    penalty = 'l2' , loss = 'squared_hinge' , * , dual = 'auto' ,..., tol = 0.0001 , C = 1.0 , multi_class = 'ovr' , fit_intercept...
    scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html
    Mon Aug 25 13:49:24 UTC 2025
      162.4K bytes
      Cache
     
  7. SVR — scikit-learn 1.7.1 documentation

    kernel = 'rbf' , degree = 3 , gamma = 'scale' , coef0 = 0.0 ,..., tol = 0.001 , C = 1.0 , epsilon = 0.1 , shrinking = True , cache_size...
    scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html
    Mon Aug 25 13:49:24 UTC 2025
      145.1K bytes
      Cache
     
  8. NuSVC — scikit-learn 1.7.1 documentation

    nu = 0.5 , kernel = 'rbf' , degree = 3 , gamma = 'scale'...coef0 = 0.0 , shrinking = True , probability = False , tol = 0.001...
    scikit-learn.org/stable/modules/generated/sklearn.svm.NuSVC.html
    Mon Aug 25 13:49:19 UTC 2025
      151.8K bytes
      Cache
     
  9. Sample pipeline for text feature extraction and...

    data_train = fetch_20newsgroups ( subset = "train" , categories = categories...categories , shuffle = True , random_state = 42 , remove = ( "headers"...
    scikit-learn.org/stable/auto_examples/model_selection/plot_grid_search_text_feature_extraction.html
    Mon Aug 25 13:49:23 UTC 2025
      168.1K bytes
      1 views
      Cache
     
  10. k_means — scikit-learn 1.7.1 documentation

    sample_weight = None , init = 'k-means++' , n_init = 'auto' , max_iter...max_iter = 300 , verbose = False , tol = 0.0001 , random_state...
    scikit-learn.org/stable/modules/generated/sklearn.cluster.k_means.html
    Mon Aug 25 13:49:19 UTC 2025
      116.4K bytes
      Cache
     
Back to top