Search Options

Results per page
Sort
Preferred Languages
Labels
Advance

Results 1051 - 1060 of 3,200 for 2 (0.18 sec)

  1. SVM-Anova: SVM with univariate feature selectio...

    2 * rng . random (( X . shape [...
    scikit-learn.org/stable/auto_examples/svm/plot_svm_anova.html
    Thu Sep 18 09:36:18 UTC 2025
      95.7K bytes
      Cache
     
  2. Gaussian process classification (GPC) on iris d...

    : 2 ] # we only take the first two...m_max]x[y_min, y_max]. plt . subplot ( 1 , 2 , i + 1 ) Z = clf . predict_proba...
    scikit-learn.org/stable/auto_examples/gaussian_process/plot_gpc_iris.html
    Thu Sep 18 09:36:17 UTC 2025
      98.4K bytes
      Cache
     
  3. Comparing random forests and the multi-output m...

    random_state = 2 ) regr_rf . fit ( X_train , y_train..."target 1" ) plt . ylabel ( "target 2" ) plt . title ( "Comparing random...
    scikit-learn.org/stable/auto_examples/ensemble/plot_random_forest_regression_multioutput.html
    Thu Sep 18 09:36:18 UTC 2025
      98.6K bytes
      Cache
     
  4. 7.8. Pairwise metrics, Affinities and Kernels —...

    for all a and b 2. d ( a , b ) == 0 , if and only...pairwise_kernels >>> X = np . array ([[ 2 , 3 ], [ 3 , 5 ], [ 5 , 8 ]])...
    scikit-learn.org/stable/modules/metrics.html
    Thu Sep 18 09:36:17 UTC 2025
      55.4K bytes
      Cache
     
  5. sklearn.random_projection — scikit-learn 1.7.2 ...

    Random projection transformers. Random projections are a simple and computationally efficient way to reduce the dimensionality of the data by trading a controlled amount of accuracy (as additional ...
    scikit-learn.org/stable/api/sklearn.random_projection.html
    Mon Sep 15 09:31:45 UTC 2025
      116.4K bytes
      Cache
     
  6. estimator_checks_generator — scikit-learn 1.7.2...

    Skip to main content Back to top Ctrl + K GitHub Choose version estimator_checks_generator # sklearn.utils.estimator_...
    scikit-learn.org/stable/modules/generated/sklearn.utils.estimator_checks.estimator_checks_generat...
    Wed Sep 17 19:57:59 UTC 2025
      109.7K bytes
      Cache
     
  7. sklearn.kernel_approximation — scikit-learn 1.7...

    Approximate kernel feature maps based on Fourier transforms and count sketches. User guide. See the Kernel Approximation section for further details.
    scikit-learn.org/stable/api/sklearn.kernel_approximation.html
    Thu Sep 18 09:36:17 UTC 2025
      116.1K bytes
      Cache
     
  8. Examples based on real world datasets — scikit-...

    Applications to real world problems with some medium sized datasets or interactive user interface. Compressive sensing: tomography reconstruction with L1 prior (Lasso) Faces recognition example usi...
    scikit-learn.org/stable/auto_examples/applications/index.html
    Thu Sep 18 09:36:18 UTC 2025
      81.8K bytes
      Cache
     
  9. fetch_20newsgroups_vectorized — scikit-learn 1....

    Gallery examples: Model Complexity Influence Multiclass sparse logistic regression on 20newgroups The Johnson-Lindenstrauss bound for embedding with random projections
    scikit-learn.org/stable/modules/generated/sklearn.datasets.fetch_20newsgroups_vectorized.html
    Thu Sep 18 09:36:18 UTC 2025
      118.2K bytes
      Cache
     
  10. fetch_species_distributions — scikit-learn 1.7....

    Gallery examples: Species distribution modeling Kernel Density Estimate of Species Distributions
    scikit-learn.org/stable/modules/generated/sklearn.datasets.fetch_species_distributions.html
    Thu Sep 18 09:36:17 UTC 2025
      112.7K bytes
      Cache
     
Back to top