- Sort Score
- Num 10 results
- Language All
- Labels All
Results 1 - 10 of 17 for test (0.1 seconds)
-
getting_started.rst.txt
disclosing some testing data in your training data....<datasets>`, split it into train and test sets, and compute the accuracy...scikit-learn.org/stable/_sources/getting_started.rst.txt -
plot_classifier_comparison.rst.txt
points in solid colors and testing points semi-transparent. The...classification accuracy on the test set. .. GENERATED FROM PYTHON...scikit-learn.org/stable/_sources/auto_examples/classification/plot_classifier_comparison.rst.txt -
preprocessing.rst.txt
K_{test} - 1'_{\text{n}_{samples}} K - K_{test} 1_{\text{n}_{samples}}...:math:`K_{test}(X, Y)` defined as: .. math:: K_{test}(X, Y) =...scikit-learn.org/stable/_sources/modules/preprocessing.rst.txt -
glossary.rst.txt
common tests This refers to the tests run on almost every...requirements on estimators tested with this function, usually...scikit-learn.org/stable/_sources/glossary.rst.txt -
plot_multi_metric_evaluation.rst.txt
("test", "-")): sample_score_mean =...sample_score_std, alpha=0.1 if sample == "test" else 0, color=color, ) ax.plot(...scikit-learn.org/stable/_sources/auto_examples/model_selection/plot_multi_metric_evaluation.rst.txt -
plot_hgbt_regression.rst.txt
shape[0]}") print(f"Test sample size: {X_test.shape[0]}")...Training sample size: 16531 Test sample size: 11021 Number of...scikit-learn.org/stable/_sources/auto_examples/ensemble/plot_hgbt_regression.rst.txt -
roadmap.rst.txt
data by implementing a common test. * An amputation sample generator...Improve scikit-learn common tests suite to make sure that (at...scikit-learn.org/stable/_sources/roadmap.rst.txt -
support.rst.txt
about repository updates and test failures on the `scikit-learn-commits...scikit-learn.org/stable/_sources/support.rst.txt -
install.rst.txt
running the full scikit-learn test suite via automated continuous...ckages\\sklearn\\datasets\\tests\\data\\openml\\292\\api-v1-...scikit-learn.org/stable/_sources/install.rst.txt -
ensemble.rst.txt
) >>> est = est.fit(X_train, y_train) # fit...mean_squared_error(y_test, est.predict(X_test)) 5.00 >>> _ = est.set_params(n_estimators=200,...scikit-learn.org/stable/_sources/modules/ensemble.rst.txt