- Sort Score
- Result 10 results
- Languages All
- Labels All
Results 1 - 10 of 30 for 2 (0.03 sec)
-
cross_validation.rst.txt
2, 2, 2, 2] >>> groups = [1, 1, 2, 2, 3, 3, 3] >>>...test)) [2 3] [0 1] [1 3] [0 2] [1 2] [0 3] [0 3] [1 2] [0 2] [1 3]...scikit-learn.org/stable/_sources/modules/cross_validation.rst.txt -
model_evaluation.rst.txt
labeling1 = [2, 0, 2, 2, 0, 1] >>> labeling2 = [0, 0, 2, 2, 0, 2] >>>...y_true = [2, 0, 2, 2, 0, 1] >>> y_pred = [0, 0, 2, 2, 0, 2] >>> ...scikit-learn.org/stable/_sources/modules/model_evaluation.rst.txt -
feature_selection.rst.txt
k=2).fit_transform(X, y) >>> X_new.shape (150, 2) These...estimation. Note that the :math:`\chi^2`-test should only be applied to...scikit-learn.org/stable/_sources/modules/feature_selection.rst.txt -
plot_discretization_strategies.rst.txt
[2, 4], [8, 8]]) centers_1 = np.array([[0,...form(-3, 3, size=(n_samples, 2)), make_blobs( n_samples=[ n_samples...scikit-learn.org/stable/_sources/auto_examples/preprocessing/plot_discretization_strategies.rst.txt -
linear_model.rst.txt
x_1 + w_2 x_2 + w_3 x_1 x_2 + w_4 x_1^2 + w_5 x_2^2 The (sometimes...:math:`[x_1, x_2]` to :math:`[1, x_1, x_2, x_1^2, x_1 x_2, x_2^2]`, and...scikit-learn.org/stable/_sources/modules/linear_model.rst.txt -
plot_multi_metric_evaluation.rst.txt
range(2, 403, 20)}, scoring=scoring, refit="AUC", n_jobs=2, re...sklearn.datasets import make_hastie_10_2 from sklearn.metrics import accuracy_score,...scikit-learn.org/stable/_sources/auto_examples/model_selection/plot_multi_metric_evaluation.rst.txt -
about.rst.txt
grid:: 2 2 4 4 :class-row: image-subgrid...scikit-learn.org/stable/_sources/about.rst.txt -
feature_extraction.rst.txt
2.0986]}{\sqrt{\big(3^2 + 0^2 + 2.0986^2\big)}} = [...\frac{v}{||v||_2} = \frac{v}{\sqrt{v{_1}^2 + v{_2}^2 + \dots + v{_n}^2}}`....scikit-learn.org/stable/_sources/modules/feature_extraction.rst.txt -
plot_classifier_comparison.rst.txt
make_classification( n_features=2, n_redundant=0, n_informative=2, random_state=1,...rng = np.random.RandomState(2) X += 2 * rng.uniform(size=X.shape)...scikit-learn.org/stable/_sources/auto_examples/classification/plot_classifier_comparison.rst.txt -
contributing.rst.txt
2. Fork the `project repository...scikit-learn 4. Follow steps 2-6 in :ref:`install_bleeding_edge`...scikit-learn.org/dev/_sources/developers/contributing.rst.txt