- Sort Score
- Num 10 results
- Language All
- Labels All
Results 1 - 10 of 30 for 2 (0.22 seconds)
-
grid_search.rst.txt
+--------- | 3 * 2 = 6 | 70 // 2 = 35 | +--------- | 6 * 2 = 12 | 35...35 // 2 = 17 | +--------- | 12 * 2 = 24 | 17 // 2 = 8 | +---------...scikit-learn.org/stable/_sources/modules/grid_search.rst.txt -
preprocessing.rst.txt
2. , 1. , 0.1], [4.4, 2.2, 1.1, 0.1], [4.4, 2.2, 1.2, 0.1],...4.1, 6.7, 2.5], [7.7, 4.2, 6.7, 2.5], [7.9, 4.4, 6.9, 2.5]]) Thus...scikit-learn.org/stable/_sources/modules/preprocessing.rst.txt -
decomposition.rst.txt
\frac{1}{2} ||X - Y||_{\mathrm{Fro}}^2 = \frac{1}{2} \sum_{i,j}...Y) = \frac{1}{2} ||X - Y||_{Fro}^2 = \frac{1}{2} \sum_{i,j} (X_{ij}...scikit-learn.org/stable/_sources/modules/decomposition.rst.txt -
feature_extraction.rst.txt
2.0986]}{\sqrt{\big(3^2 + 0^2 + 2.0986^2\big)}} = [...(one_image, (2, 2)) >>> patches.shape (9, 2, 2, 3) >>> patches[4,...scikit-learn.org/stable/_sources/modules/feature_extraction.rst.txt -
clustering.rst.txt
2, 0, 3, 4, 5, 1] >>> labels_pred = [1, 1, 0, 0, 2, 2, 2,...1, 2, 0, 3, 4, 5, 1] >>> labels_pred = [1, 1, 0, 0, 2, 2, 2,...scikit-learn.org/stable/_sources/modules/clustering.rst.txt -
cross_validation.rst.txt
2, 2, 2, 2] >>> groups = [1, 1, 2, 2, 3, 3, 3] >>>...test)) [2 3] [0 1] [1 3] [0 2] [1 2] [0 3] [0 3] [1 2] [0 2] [1 3]...scikit-learn.org/stable/_sources/modules/cross_validation.rst.txt -
model_evaluation.rst.txt
labeling1 = [2, 0, 2, 2, 0, 1] >>> labeling2 = [0, 0, 2, 2, 0, 2] >>>...y_true = [2, 0, 2, 2, 0, 1] >>> y_pred = [0, 0, 2, 2, 0, 2] >>> ...scikit-learn.org/stable/_sources/modules/model_evaluation.rst.txt -
plot_release_highlights_1_7_0.rst.txt
id="sk-estimator-id-2" type="checkbox" ><label for="sk-estimator-id-2" clas...#sk-container-id-2 pre { padding: 0; } #sk-container-id-2 input.sk-hidden--visually...scikit-learn.org/stable/_sources/auto_examples/release_highlights/plot_release_highlights_1_7_0.r... -
plot_classifier_comparison.rst.txt
make_classification( n_features=2, n_redundant=0, n_informative=2, random_state=1,...rng = np.random.RandomState(2) X += 2 * rng.uniform(size=X.shape)...scikit-learn.org/stable/_sources/auto_examples/classification/plot_classifier_comparison.rst.txt -
neighbors.rst.txt
[-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]]) >>> nbrs...np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]]) >>> kdt...scikit-learn.org/stable/_sources/modules/neighbors.rst.txt