- Sort Score
- Result 10 results
- Languages All
- Labels All
Results 1 - 10 of 21 for 10 (0.07 sec)
-
plot_discretization_strategies.rst.txt
n_samples // 10, n_samples * 4 // 10, n_samples // 10, n_samples...n_samples * 4 // 10, ], cluster_std=0.5, centers=centers_0, random_state=random_state,...scikit-learn.org/stable/_sources/auto_examples/preprocessing/plot_discretization_strategies.rst.txt -
cross_validation.rst.txt
12 13 14] [ 2 3 10 15 16 17] [ 1 2 3 8 9 10 12 13 14 15 16 17]...training size in question, then 5 or 10-fold cross validation can overestimate...scikit-learn.org/stable/_sources/modules/cross_validation.rst.txt -
feature_selection.rst.txt
selected features: if we have 10 features and ask for 7 selected...scikit-learn.org/stable/_sources/modules/feature_selection.rst.txt -
model_evaluation.rst.txt
and Estimation <10.1198/016214506000001437>` In:...:doi:`Probabilistic Forecasting <10.1146/annurev-statistics-062713-085831>`....scikit-learn.org/stable/_sources/modules/model_evaluation.rst.txt -
linear_model.rst.txt
for example `cv=10` for 10-fold cross-validation, rather...computation 15.7 (2003): 1691-1714. <10.1162/089976603321891864>` Comparison...scikit-learn.org/stable/_sources/modules/linear_model.rst.txt -
plot_multi_metric_evaluation.rst.txt
datasets import make_hastie_10_2 from sklearn.metrics import...code-block:: Python X, y = make_hastie_10_2(n_samples=8000, random_state=42)...scikit-learn.org/stable/_sources/auto_examples/model_selection/plot_multi_metric_evaluation.rst.txt -
ensemble.rst.txt
import make_hastie_10_2 >>> X, y = make_hastie_10_2(random_state=0)...timators=10) >>> clf = clf.fit(X, y) # fit with 10 trees >>>...scikit-learn.org/stable/_sources/modules/ensemble.rst.txt -
plot_kmeans_digits.rst.txt
code-block:: none # digits: 10; # samples: 1797; # features...linewidths=3, color="w", zorder=10, ) plt.title( "K-means clustering...scikit-learn.org/stable/_sources/auto_examples/cluster/plot_kmeans_digits.rst.txt -
plot_hgbt_regression.rst.txt
10)) pointplot = sns.lineplot(x=df["period"],...fig, ax = plt.subplots(figsize=(10, 5)) average_week_demand.plot(color=colors[0],...scikit-learn.org/stable/_sources/auto_examples/ensemble/plot_hgbt_regression.rst.txt -
feature_extraction.rst.txt
For instance a collection of 10,000 short text documents (such...HashingVectorizer(n_features=10) >>> hv.transform(corpus) <Compressed...scikit-learn.org/stable/_sources/modules/feature_extraction.rst.txt