- Sort Score
- Num 10 results
- Language All
- Labels All
Results 1 - 10 of 32 for 1 (0.03 seconds)
-
preprocessing.rst.txt
1. , 0.1], [4.4, 2.2, 1.1, 0.1], [4.4, 2.2, 1.2, 0.1], ...,...0. , -1.22, 1.33 ], [ 1.22, 0. , -0.267], [-1.22, 1.22, -1.06 ]])...scikit-learn.org/stable/_sources/modules/preprocessing.rst.txt -
clustering.rst.txt
1, 1, 1] >>> labels_pred = [0, 0, 1, 1, 2, 2] >>>...= [0, 0, 0, 1, 1, 1] >>> labels_pred = [0, 0, 1, 1, 2, 2] >>>...scikit-learn.org/stable/_sources/modules/clustering.rst.txt -
getting_started.rst.txt
dataset is easy array([1., 1., 1., 1., 1.]) Automatic parameter...ransform(X) array([[-1., 1.], [ 1., -1.]]) Sometimes, you want...scikit-learn.org/stable/_sources/getting_started.rst.txt -
decomposition.rst.txt
array([[1, 1], [2, 1], [3, 1.2], [4, 1], [5, 0.8], [6, 1]]) >>>...np.array([[1, 0], [1, 6.1], [1, 0], [1, 4], [3.2, 1], [0, 4]])...scikit-learn.org/stable/_sources/modules/decomposition.rst.txt -
feature_extraction.rst.txt
array([[1, 1, 1, 0, 1, 1, 1, 0], [1, 1, 0, 1, 1, 1, 0, 1]]) In...array([[0, 1, 1, 1, 0, 0, 1, 0, 1], [0, 1, 0, 1, 0, 2, 1, 0, 1], [1,...scikit-learn.org/stable/_sources/modules/feature_extraction.rst.txt -
plot_classifier_comparison.rst.txt
C=1, random_state=42), GaussianProcessClass(1.0 * RBF(1.0),...max_features=1, random_state=42 ), MLPClassifier(alpha=1, max_iter=1000,...scikit-learn.org/stable/_sources/auto_examples/classification/plot_classifier_comparison.rst.txt -
glossary.rst.txt
``[{0: 1, 1: 1}, {0: 1, 1: 5}, {0: 1, 1: 1}, {0: 1, 1: 1}]`` instead...instead of ``[{1:1}, {2:5}, {3:1}, {4:1}]``. The ``class_weight``...scikit-learn.org/stable/_sources/glossary.rst.txt -
grid_search.rst.txt
{'C': [1, 10, 100, 1000], 'kernel': ['linear']}, {'C': [1, 10,...``loguniform(1, 100)`` can be used instead of ``[1, 10, 100]``....scikit-learn.org/stable/_sources/modules/grid_search.rst.txt -
faq.rst.txt
reshape(-1, 1) >>> X array([[0], [1], [2]]) >>> # We...doctest: +SKIP (array([0, 1]), array([ 0, 0, -1])) Note that the example...scikit-learn.org/stable/_sources/faq.rst.txt -
model_evaluation.rst.txt
1, 1, 1, 1, 1] >>> y_pred = [0, 1, 0, 1, 0, 1, 0, 1] >>>...0, 0, 1, 1, 1, 1, 1] >>> y_pred = [0, 1, 0, 1, 0, 1, 0, 1] >>>...scikit-learn.org/stable/_sources/modules/model_evaluation.rst.txt