- Sort Score
- Num 10 results
- Language All
- Labels All
Results 1 - 10 of 32 for 1 (0.08 seconds)
-
feature_extraction.rst.txt
array([[1, 1, 1, 0, 1, 1, 1, 0], [1, 1, 0, 1, 1, 1, 0, 1]]) In...array([[0, 1, 1, 1, 0, 0, 1, 0, 1], [0, 1, 0, 1, 0, 2, 1, 0, 1], [1,...scikit-learn.org/stable/_sources/modules/feature_extraction.rst.txt -
plot_classifier_comparison.rst.txt
C=1, random_state=42), GaussianProcessClass(1.0 * RBF(1.0),...max_features=1, random_state=42 ), MLPClassifier(alpha=1, max_iter=1000,...scikit-learn.org/stable/_sources/auto_examples/classification/plot_classifier_comparison.rst.txt -
ensemble.rst.txt
1, 2, np.nan]).reshape(-1, 1) >>> y = [0, 0, 1, 1] >>> gbdt...np.nan, 1, 2, np.nan]).reshape(-1, 1) >>> y = [0, 1, 0, 0, 1] >>>...scikit-learn.org/stable/_sources/modules/ensemble.rst.txt -
plot_release_highlights_1_7_0.rst.txt
#sk-container-id-1 pre { padding: 0; } #sk-container-id-1 input.sk-hidden--visually...ound); flex-grow: 1; } #sk-container-id-1 div.sk-parallel { display:...scikit-learn.org/stable/_sources/auto_examples/release_highlights/plot_release_highlights_1_7_0.r... -
neighbors.rst.txt
array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])...np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])...scikit-learn.org/stable/_sources/modules/neighbors.rst.txt -
model_evaluation.rst.txt
1, 1, 1, 1, 1] >>> y_pred = [0, 1, 0, 1, 0, 1, 0, 1] >>>...0, 0, 1, 1, 1, 1, 1] >>> y_pred = [0, 1, 0, 1, 0, 1, 0, 1] >>>...scikit-learn.org/stable/_sources/modules/model_evaluation.rst.txt -
plot_kmeans_digits.rst.txt
1].min() - 1, reduced_data[:, 1].max() + 1 xx, yy =...reduced_data[:, 0].min() - 1, reduced_data[:, 0].max() + 1 y_min, y_max =...scikit-learn.org/stable/_sources/auto_examples/cluster/plot_kmeans_digits.rst.txt -
preprocessing.rst.txt
1. , 0.1], [4.4, 2.2, 1.1, 0.1], [4.4, 2.2, 1.2, 0.1], ...,...0. , -1.22, 1.33 ], [ 1.22, 0. , -0.267], [-1.22, 1.22, -1.06 ]])...scikit-learn.org/stable/_sources/modules/preprocessing.rst.txt -
plot_discretization_strategies.rst.txt
len(strategies) + 1, i) ax.scatter(X[:, 0], X[:, 1], edgecolors="k")...300), np.linspace(X[:, 1].min(), X[:, 1].max(), 300), ) grid =...scikit-learn.org/stable/_sources/auto_examples/preprocessing/plot_discretization_strategies.rst.txt -
plot_hgbt_regression.rst.txt
"nswdemand": 1, "nswprice": 1, "vicdemand": -1, "vicprice": -1, } hgbt_no_cst...Normalized between 0 and 1; - day: day of week (1-7); - period: half...scikit-learn.org/stable/_sources/auto_examples/ensemble/plot_hgbt_regression.rst.txt