- Sort Score
- Result 10 results
- Languages All
- Labels All
Results 1 - 10 of 93 for pipe (0.09 sec)
-
TfidfTransformer — scikit-learn 1.7.2 documenta...
'one' ] >>> pipe = Pipeline ([( 'count' , CountVectorizer...TfidfTransformer ())]) . fit ( corpus ) >>> pipe [ 'count' ] . transform ( corpus...scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfTransformer.html -
Release Highlights for scikit-learn 1.0 — sciki...
LogisticRegression ()) pipe . fit ( X , y ) pipe [: - 1 ] . get_feature_names_out...the latest version (with pip): pip install -- upgrade scikit...scikit-learn.org/stable/auto_examples/release_highlights/plot_release_highlights_1_0_0.html -
Release Highlights for scikit-learn 0.24 — scik...
the latest version (with pip): pip install -- upgrade scikit...fetch_covtype ( return_X_y = True ) pipe = make_pipeline ( MinMaxScaler...scikit-learn.org/stable/auto_examples/release_highlights/plot_release_highlights_0_24_0.html -
Part 4: Natural Language Processing with Fess
$ pip install elasticsearch $ pip install numpy $ pip install...with the following command: $ pip install esanpy To use it, import...fess.codelibs.org/articles/4/document.html -
Write a synthetic test | Elastic Docs
pipe the inline journey into the...save that code to a file and pipe the file’s contents into @elastic-synthetics...www.elastic.co/docs/solutions/observability/synthetics/write-synthetic-test -
minmax_scale — scikit-learn 1.7.2 documentation
scikit-learn.org/stable/modules/generated/sklearn.preprocessing.minmax_scale.html -
quantile_transform — scikit-learn 1.7.2 documen...
scikit-learn.org/stable/modules/generated/sklearn.preprocessing.quantile_transform.html -
Pipeline — scikit-learn 1.7.2 documentation
random_state = 0 ) >>> pipe = Pipeline ([( 'scaler' , StandardScaler...test set into the train set >>> pipe . fit ( X_train , y_train )...scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html -
7.3. Preprocessing data — scikit-learn 1.7.2 do...
random_state = 42 ) >>> pipe = make_pipeline ( StandardScaler...(), LogisticRegression ()) >>> pipe . fit ( X_train , y_train )...scikit-learn.org/stable/modules/preprocessing.html -
3.2. Tuning the hyper-parameters of an estimato...
tion import SelectKBest >>> pipe = Pipeline ([ ... ( 'select'...>>> search = GridSearchCV ( pipe , param_grid , cv = 5 ) . fit...scikit-learn.org/stable/modules/grid_search.html