- Sort Score
- Num 10 results
- Language All
- Labels All
Results 1 - 10 of over 10,000 for 1 (0.07 seconds)
-
1.12. Multiclass and multioutput algorithms ...
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,...0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,...scikit-learn.org/stable/modules/multiclass.html -
1.6. Nearest Neighbors — scikit-learn 1.7...
([[ - 1 , - 1 ], [ - 2 , - 1 ], [ - 3 , - 2 ], [ 1 , 1 ], [ 2...([[ - 1 , - 1 ], [ - 2 , - 1 ], [ - 3 , - 2 ], [ 1 , 1 ], [ 2...scikit-learn.org/stable/modules/neighbors.html -
1.4. Support Vector Machines — scikit-lea...
“0 vs 1”, “0 vs 2” , … “0 vs n”, “1 vs 2”, “1 vs 3”, “1 vs n”,...[[ 0 , 0 ], [ 1 , 1 ]] >>> y = [ 0 , 1 ] >>>...scikit-learn.org/stable/modules/svm.html -
Version 1.4 — scikit-learn 1.7.2 document...
Version 1.4.1 # February 2024 Changed models...deprecated in version 1.4 and will be removed in version 1.6. Use the default...scikit-learn.org/stable/whats_new/v1.4.html -
1.1. Linear Models — scikit-learn 1.7.2 d...
array([[1, 0, 0, 0], [1, 0, 1, 0], [1, 1, 0, 0], [1, 1, 1, 1]]) >>>... 1.e-05, 1.e-04, 1.e-03, 1.e-02, 1.e-01, 1.e+00, 1.e+01, 1.e+02,...scikit-learn.org/stable/modules/linear_model.html -
CountVectorizer — scikit-learn 1.7.2 docu...
[[0 1 1 1 0 0 1 0 1] [0 2 0 1 0 1 1 0 1] [1 0 0 1 1 0 1 1 1] [0...[[0 0 1 1 0 0 1 0 0 0 0 1 0] [0 1 0 1 0 1 0 1 0 0 1 0 0] [1 0 0...scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html -
completeness_score — scikit-learn 1.7.2 d...
1 , 1 ], [ 1 , 1 , 0 , 0 ]) 1.0 Non-perfect labelings...completeness_score ([ 0 , 0 , 1 , 1 ], [ 0 , 1 , 0 , 1 ])) 0.0 >>>...scikit-learn.org/stable/modules/generated/sklearn.metrics.completeness_score.html -
brier_score_loss — scikit-learn 1.7.2 doc...
y_true in {-1, 1} or {0, 1}, pos_label defaults to 1; else if y_true...defined as: \[\frac{1}{N}\sum_{i=1}^{N}\sum_{c=1}^{C}(y_{ic} - \hat{p}_{ic})^{2}\]...scikit-learn.org/stable/modules/generated/sklearn.metrics.brier_score_loss.html -
LabelBinarizer — scikit-learn 1.7.2 docum...
array([[1, 0, 0], [0, 1, 0], [0, 0, 1], [0, 1, 0]]) fit ( y )...fit ( np . array ([[ 0 , 1 , 1 ], [ 1 , 0 , 0 ]])) LabelBinarizer()...scikit-learn.org/stable/modules/generated/sklearn.preprocessing.LabelBinarizer.html -
precision_score — scikit-learn 1.7.2 docu...
[ 1 , 1 , 1 ], [ 0 , 1 , 1 ]] >>> y_pred...= [[ 0 , 0 , 0 ], [ 1 , 1 , 1 ], [ 1 , 1 , 0 ]] >>>...scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_score.html