make_hastie_10_2#
- sklearn.datasets.make_hastie_10_2(n_samples=12000, *, random_state=None)[source]#
- Generate data for binary classification used in Hastie et al. 2009, Example 10.2. - The ten features are standard independent Gaussian and the target - yis defined by:- y[i] = 1 if np.sum(X[i] ** 2) > 9.34 else -1 - Read more in the User Guide. - Parameters:
- n_samplesint, default=12000
- The number of samples. 
- random_stateint, RandomState instance or None, default=None
- Determines random number generation for dataset creation. Pass an int for reproducible output across multiple function calls. See Glossary. 
 
- Returns:
- Xndarray of shape (n_samples, 10)
- The input samples. 
- yndarray of shape (n_samples,)
- The output values. 
 
 - See also - make_gaussian_quantiles
- A generalization of this dataset approach. 
 - References [1]- T. Hastie, R. Tibshirani and J. Friedman, “Elements of Statistical Learning Ed. 2”, Springer, 2009. - Examples - >>> from sklearn.datasets import make_hastie_10_2 >>> X, y = make_hastie_10_2(n_samples=24000, random_state=42) >>> X.shape (24000, 10) >>> y.shape (24000,) >>> list(y[:5]) [np.float64(-1.0), np.float64(1.0), np.float64(-1.0), np.float64(1.0), np.float64(-1.0)] 
Gallery examples#
 
Demonstration of multi-metric evaluation on cross_val_score and GridSearchCV
Demonstration of multi-metric evaluation on cross_val_score and GridSearchCV
 
    