DictionaryLearning#
- class sklearn.decomposition.DictionaryLearning(n_components=None, *, alpha=1, max_iter=1000, tol=1e-08, fit_algorithm='lars', transform_algorithm='omp', transform_n_nonzero_coefs=None, transform_alpha=None, n_jobs=None, code_init=None, dict_init=None, callback=None, verbose=False, split_sign=False, random_state=None, positive_code=False, positive_dict=False, transform_max_iter=1000)[source]#
Dictionary learning.
Finds a dictionary (a set of atoms) that performs well at sparsely encoding the fitted data.
Solves the optimization problem:
(U^*,V^*) = argmin 0.5 || X - U V ||_Fro^2 + alpha * || U ||_1,1 (U,V) with || V_k ||_2 <= 1 for all 0 <= k < n_components
||.||_Fro stands for the Frobenius norm and ||.||_1,1 stands for the entry-wise matrix norm which is the sum of the absolute values of all the entries in the matrix.
Read more in the User Guide.
- Parameters:
- n_componentsint, default=None
Number of dictionary elements to extract. If None, then
n_components
is set ton_features
.- alphafloat, default=1.0
Sparsity controlling parameter.
- max_iterint, default=1000
Maximum number of iterations to perform.
- tolfloat, default=1e-8
Tolerance for numerical error.
- fit_algorithm{‘lars’, ‘cd’}, default=’lars’
'lars'
: uses the least angle regression method to solve the lasso problem (lars_path
);'cd'
: uses the coordinate descent method to compute the Lasso solution (Lasso
). Lars will be faster if the estimated components are sparse.
Added in version 0.17: cd coordinate descent method to improve speed.
- transform_algorithm{‘lasso_lars’, ‘lasso_cd’, ‘lars’, ‘omp’, ‘threshold’}, default=’omp’
Algorithm used to transform the data:
'lars'
: uses the least angle regression method (lars_path
);'lasso_lars'
: uses Lars to compute the Lasso solution.'lasso_cd'
: uses the coordinate descent method to compute the Lasso solution (Lasso
).'lasso_lars'
will be faster if the estimated components are sparse.'omp'
: uses orthogonal matching pursuit to estimate the sparse solution.'threshold'
: squashes to zero all coefficients less than alpha from the projectiondictionary * X'
.
Added in version 0.17: lasso_cd coordinate descent method to improve speed.
- transform_n_nonzero_coefsint, default=None
Number of nonzero coefficients to target in each column of the solution. This is only used by
algorithm='lars'
andalgorithm='omp'
. IfNone
, thentransform_n_nonzero_coefs=int(n_features / 10)
.- transform_alphafloat, default=None
If
algorithm='lasso_lars'
oralgorithm='lasso_cd'
,alpha
is the penalty applied to the L1 norm. Ifalgorithm='threshold'
,alpha
is the absolute value of the threshold below which coefficients will be squashed to zero. IfNone
, defaults toalpha
.Changed in version 1.2: When None, default value changed from 1.0 to
alpha
.- n_jobsint or None, default=None
Number of parallel jobs to run.
None
means 1 unless in ajoblib.parallel_backend
context.-1
means using all processors. See Glossary for more details.- code_initndarray of shape (n_samples, n_components), default=None
Initial value for the code, for warm restart. Only used if
code_init
anddict_init
are not None.- dict_initndarray of shape (n_components, n_features), default=None
Initial values for the dictionary, for warm restart. Only used if
code_init
anddict_init
are not None.- callbackcallable, default=None
Callable that gets invoked every five iterations.
Added in version 1.3.
- verbosebool, default=False
To control the verbosity of the procedure.
- split_signbool, default=False
Whether to split the sparse feature vector into the concatenation of its negative part and its positive part. This can improve the performance of downstream classifiers.
- random_stateint, RandomState instance or None, default=None
Used for initializing the dictionary when
dict_init
is not specified, randomly shuffling the data whenshuffle
is set toTrue
, and updating the dictionary. Pass an int for reproducible results across multiple function calls. See Glossary.- positive_codebool, default=False
Whether to enforce positivity when finding the code.
Added in version 0.20.
- positive_dictbool, default=False
Whether to enforce positivity when finding the dictionary.
Added in version 0.20.
- transform_max_iterint, default=1000
Maximum number of iterations to perform if
algorithm='lasso_cd'
or'lasso_lars'
.Added in version 0.22.
- Attributes:
- components_ndarray of shape (n_components, n_features)
dictionary atoms extracted from the data
- error_array
vector of errors at each iteration
- n_features_in_int
Number of features seen during fit.
Added in version 0.24.
- feature_names_in_ndarray of shape (
n_features_in_
,) Names of features seen during fit. Defined only when
X
has feature names that are all strings.Added in version 1.0.
- n_iter_int
Number of iterations run.
See also
MiniBatchDictionaryLearning
A faster, less accurate, version of the dictionary learning algorithm.
MiniBatchSparsePCA
Mini-batch Sparse Principal Components Analysis.
SparseCoder
Find a sparse representation of data from a fixed, precomputed dictionary.
SparsePCA
Sparse Principal Components Analysis.
References
J. Mairal, F. Bach, J. Ponce, G. Sapiro, 2009: Online dictionary learning for sparse coding (https://www.di.ens.fr/~fbach/mairal_icml09.pdf)
Examples
>>> import numpy as np >>> from sklearn.datasets import make_sparse_coded_signal >>> from sklearn.decomposition import DictionaryLearning >>> X, dictionary, code = make_sparse_coded_signal( ... n_samples=30, n_components=15, n_features=20, n_nonzero_coefs=10, ... random_state=42, ... ) >>> dict_learner = DictionaryLearning( ... n_components=15, transform_algorithm='lasso_lars', transform_alpha=0.1, ... random_state=42, ... ) >>> X_transformed = dict_learner.fit(X).transform(X)
We can check the level of sparsity of
X_transformed
:>>> np.mean(X_transformed == 0) np.float64(0.52...)
We can compare the average squared euclidean norm of the reconstruction error of the sparse coded signal relative to the squared euclidean norm of the original signal:
>>> X_hat = X_transformed @ dict_learner.components_ >>> np.mean(np.sum((X_hat - X) ** 2, axis=1) / np.sum(X ** 2, axis=1)) np.float64(0.05...)
- fit(X, y=None)[source]#
Fit the model from data in X.
- Parameters:
- Xarray-like of shape (n_samples, n_features)
Training vector, where
n_samples
is the number of samples andn_features
is the number of features.- yIgnored
Not used, present for API consistency by convention.
- Returns:
- selfobject
Returns the instance itself.
- fit_transform(X, y=None)[source]#
Fit the model from data in X and return the transformed data.
- Parameters:
- Xarray-like of shape (n_samples, n_features)
Training vector, where
n_samples
is the number of samples andn_features
is the number of features.- yIgnored
Not used, present for API consistency by convention.
- Returns:
- Vndarray of shape (n_samples, n_components)
Transformed data.
- get_feature_names_out(input_features=None)[source]#
Get output feature names for transformation.
The feature names out will prefixed by the lowercased class name. For example, if the transformer outputs 3 features, then the feature names out are:
["class_name0", "class_name1", "class_name2"]
.- Parameters:
- input_featuresarray-like of str or None, default=None
Only used to validate feature names with the names seen in
fit
.
- Returns:
- feature_names_outndarray of str objects
Transformed feature names.
- get_metadata_routing()[source]#
Get metadata routing of this object.
Please check User Guide on how the routing mechanism works.
- Returns:
- routingMetadataRequest
A
MetadataRequest
encapsulating routing information.
- get_params(deep=True)[source]#
Get parameters for this estimator.
- Parameters:
- deepbool, default=True
If True, will return the parameters for this estimator and contained subobjects that are estimators.
- Returns:
- paramsdict
Parameter names mapped to their values.
- set_output(*, transform=None)[source]#
Set output container.
See Introducing the set_output API for an example on how to use the API.
- Parameters:
- transform{“default”, “pandas”, “polars”}, default=None
Configure output of
transform
andfit_transform
."default"
: Default output format of a transformer"pandas"
: DataFrame output"polars"
: Polars outputNone
: Transform configuration is unchanged
Added in version 1.4:
"polars"
option was added.
- Returns:
- selfestimator instance
Estimator instance.
- set_params(**params)[source]#
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as
Pipeline
). The latter have parameters of the form<component>__<parameter>
so that it’s possible to update each component of a nested object.- Parameters:
- **paramsdict
Estimator parameters.
- Returns:
- selfestimator instance
Estimator instance.
- transform(X)[source]#
Encode the data as a sparse combination of the dictionary atoms.
Coding method is determined by the object parameter
transform_algorithm
.- Parameters:
- Xndarray of shape (n_samples, n_features)
Test data to be transformed, must have the same number of features as the data used to train the model.
- Returns:
- X_newndarray of shape (n_samples, n_components)
Transformed data.