d2_absolute_error_score#
- sklearn.metrics.d2_absolute_error_score(y_true, y_pred, *, sample_weight=None, multioutput='uniform_average')[source]#
\(D^2\) regression score function, fraction of absolute error explained.
Best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). A model that always uses the empirical median of
y_true
as constant prediction, disregarding the input features, gets a \(D^2\) score of 0.0.Read more in the User Guide.
Added in version 1.1.
- Parameters:
- y_truearray-like of shape (n_samples,) or (n_samples, n_outputs)
Ground truth (correct) target values.
- y_predarray-like of shape (n_samples,) or (n_samples, n_outputs)
Estimated target values.
- sample_weightarray-like of shape (n_samples,), default=None
Sample weights.
- multioutput{‘raw_values’, ‘uniform_average’} or array-like of shape (n_outputs,), default=’uniform_average’
Defines aggregating of multiple output values. Array-like value defines weights used to average scores.
- ‘raw_values’ :
Returns a full set of errors in case of multioutput input.
- ‘uniform_average’ :
Scores of all outputs are averaged with uniform weight.
- Returns:
- scorefloat or ndarray of floats
The \(D^2\) score with an absolute error deviance or ndarray of scores if ‘multioutput’ is ‘raw_values’.
Notes
Like \(R^2\), \(D^2\) score may be negative (it need not actually be the square of a quantity D).
This metric is not well-defined for single samples and will return a NaN value if n_samples is less than two.
References
[1]Eq. (3.11) of Hastie, Trevor J., Robert Tibshirani and Martin J. Wainwright. “Statistical Learning with Sparsity: The Lasso and Generalizations.” (2015). https://hastie.su.domains/StatLearnSparsity/
Examples
>>> from sklearn.metrics import d2_absolute_error_score >>> y_true = [3, -0.5, 2, 7] >>> y_pred = [2.5, 0.0, 2, 8] >>> d2_absolute_error_score(y_true, y_pred) np.float64(0.764...) >>> y_true = [[0.5, 1], [-1, 1], [7, -6]] >>> y_pred = [[0, 2], [-1, 2], [8, -5]] >>> d2_absolute_error_score(y_true, y_pred, multioutput='uniform_average') np.float64(0.691...) >>> d2_absolute_error_score(y_true, y_pred, multioutput='raw_values') array([0.8125 , 0.57142857]) >>> y_true = [1, 2, 3] >>> y_pred = [1, 2, 3] >>> d2_absolute_error_score(y_true, y_pred) np.float64(1.0) >>> y_true = [1, 2, 3] >>> y_pred = [2, 2, 2] >>> d2_absolute_error_score(y_true, y_pred) np.float64(0.0) >>> y_true = [1, 2, 3] >>> y_pred = [3, 2, 1] >>> d2_absolute_error_score(y_true, y_pred) np.float64(-1.0)