contingency_matrix#
- sklearn.metrics.cluster.contingency_matrix(labels_true, labels_pred, *, eps=None, sparse=False, dtype=<class 'numpy.int64'>)[source]#
Build a contingency matrix describing the relationship between labels.
Read more in the User Guide.
- Parameters:
- labels_truearray-like of shape (n_samples,)
Ground truth class labels to be used as a reference.
- labels_predarray-like of shape (n_samples,)
Cluster labels to evaluate.
- epsfloat, default=None
If a float, that value is added to all values in the contingency matrix. This helps to stop NaN propagation. If
None, nothing is adjusted.- sparsebool, default=False
If
True, return a sparse CSR contingency matrix. Ifepsis notNoneandsparseisTruewill raise ValueError.Added in version 0.18.
- dtypenumeric type, default=np.int64
Output dtype. Ignored if
epsis notNone.Added in version 0.24.
- Returns:
- contingency{array-like, sparse}, shape=[n_classes_true, n_classes_pred]
Matrix \(C\) such that \(C_{i, j}\) is the number of samples in true class \(i\) and in predicted class \(j\). If
eps is None, the dtype of this array will be integer unless set otherwise with thedtypeargument. Ifepsis given, the dtype will be float. Will be asklearn.sparse.csr_matrixifsparse=True.
Examples
>>> from sklearn.metrics.cluster import contingency_matrix >>> labels_true = [0, 0, 1, 1, 2, 2] >>> labels_pred = [1, 0, 2, 1, 0, 2] >>> contingency_matrix(labels_true, labels_pred) array([[1, 1, 0], [0, 1, 1], [1, 0, 1]])