mean_gamma_deviance#
- sklearn.metrics.mean_gamma_deviance(y_true, y_pred, *, sample_weight=None)[source]#
Mean Gamma deviance regression loss.
Gamma deviance is equivalent to the Tweedie deviance with the power parameter
power=2
. It is invariant to scaling of the target variable, and measures relative errors.Read more in the User Guide.
- Parameters:
- y_truearray-like of shape (n_samples,)
Ground truth (correct) target values. Requires y_true > 0.
- y_predarray-like of shape (n_samples,)
Estimated target values. Requires y_pred > 0.
- sample_weightarray-like of shape (n_samples,), default=None
Sample weights.
- Returns:
- lossfloat
A non-negative floating point value (the best value is 0.0).
Examples
>>> from sklearn.metrics import mean_gamma_deviance >>> y_true = [2, 0.5, 1, 4] >>> y_pred = [0.5, 0.5, 2., 2.] >>> mean_gamma_deviance(y_true, y_pred) np.float64(1.0568...)