VotingRegressor#
- class sklearn.ensemble.VotingRegressor(estimators, *, weights=None, n_jobs=None, verbose=False)[source]#
- Prediction voting regressor for unfitted estimators. - A voting regressor is an ensemble meta-estimator that fits several base regressors, each on the whole dataset. Then it averages the individual predictions to form a final prediction. - For a detailed example, refer to Plot individual and voting regression predictions. - Read more in the User Guide. - Added in version 0.21. - Parameters:
- estimatorslist of (str, estimator) tuples
- Invoking the - fitmethod on the- VotingRegressorwill fit clones of those original estimators that will be stored in the class attribute- self.estimators_. An estimator can be set to- 'drop'using- set_params.- Changed in version 0.21: - 'drop'is accepted. Using None was deprecated in 0.22 and support was removed in 0.24.
- weightsarray-like of shape (n_regressors,), default=None
- Sequence of weights ( - floator- int) to weight the occurrences of predicted values before averaging. Uses uniform weights if- None.
- n_jobsint, default=None
- The number of jobs to run in parallel for - fit.- Nonemeans 1 unless in a- joblib.parallel_backendcontext.- -1means using all processors. See Glossary for more details.
- verbosebool, default=False
- If True, the time elapsed while fitting will be printed as it is completed. - Added in version 0.23. 
 
- Attributes:
- estimators_list of regressors
- The collection of fitted sub-estimators as defined in - estimatorsthat are not ‘drop’.
- named_estimators_Bunch
- Attribute to access any fitted sub-estimators by name. - Added in version 0.20. 
- n_features_in_int
- Number of features seen during fit. 
- feature_names_in_ndarray of shape (n_features_in_,)
- Names of features seen during fit. Only defined if the underlying estimators expose such an attribute when fit. - Added in version 1.0. 
 
 - See also - VotingClassifier
- Soft Voting/Majority Rule classifier. 
 - Examples - >>> import numpy as np >>> from sklearn.linear_model import LinearRegression >>> from sklearn.ensemble import RandomForestRegressor >>> from sklearn.ensemble import VotingRegressor >>> from sklearn.neighbors import KNeighborsRegressor >>> r1 = LinearRegression() >>> r2 = RandomForestRegressor(n_estimators=10, random_state=1) >>> r3 = KNeighborsRegressor() >>> X = np.array([[1, 1], [2, 4], [3, 9], [4, 16], [5, 25], [6, 36]]) >>> y = np.array([2, 6, 12, 20, 30, 42]) >>> er = VotingRegressor([('lr', r1), ('rf', r2), ('r3', r3)]) >>> print(er.fit(X, y).predict(X)) [ 6.8 8.4 12.5 17.8 26 34] - In the following example, we drop the - 'lr'estimator with- set_paramsand fit the remaining two estimators:- >>> er = er.set_params(lr='drop') >>> er = er.fit(X, y) >>> len(er.estimators_) 2 - fit(X, y, **fit_params)[source]#
- Fit the estimators. - Parameters:
- X{array-like, sparse matrix} of shape (n_samples, n_features)
- Training vectors, where - n_samplesis the number of samples and- n_featuresis the number of features.
- yarray-like of shape (n_samples,)
- Target values. 
- **fit_paramsdict
- Parameters to pass to the underlying estimators. - Added in version 1.5: Only available if - enable_metadata_routing=True, which can be set by using- sklearn.set_config(enable_metadata_routing=True). See Metadata Routing User Guide for more details.
 
- Returns:
- selfobject
- Fitted estimator. 
 
 
 - fit_transform(X, y=None, **fit_params)[source]#
- Return class labels or probabilities for each estimator. - Return predictions for X for each estimator. - Parameters:
- X{array-like, sparse matrix, dataframe} of shape (n_samples, n_features)
- Input samples. 
- yndarray of shape (n_samples,), default=None
- Target values (None for unsupervised transformations). 
- **fit_paramsdict
- Additional fit parameters. 
 
- Returns:
- X_newndarray array of shape (n_samples, n_features_new)
- Transformed array. 
 
 
 - get_feature_names_out(input_features=None)[source]#
- Get output feature names for transformation. - Parameters:
- input_featuresarray-like of str or None, default=None
- Not used, present here for API consistency by convention. 
 
- Returns:
- feature_names_outndarray of str objects
- Transformed feature names. 
 
 
 - get_metadata_routing()[source]#
- Get metadata routing of this object. - Please check User Guide on how the routing mechanism works. - Added in version 1.5. - Returns:
- routingMetadataRouter
- A - MetadataRouterencapsulating routing information.
 
 
 - get_params(deep=True)[source]#
- Get the parameters of an estimator from the ensemble. - Returns the parameters given in the constructor as well as the estimators contained within the - estimatorsparameter.- Parameters:
- deepbool, default=True
- Setting it to True gets the various estimators and the parameters of the estimators as well. 
 
- Returns:
- paramsdict
- Parameter and estimator names mapped to their values or parameter names mapped to their values. 
 
 
 - predict(X)[source]#
- Predict regression target for X. - The predicted regression target of an input sample is computed as the mean predicted regression targets of the estimators in the ensemble. - Parameters:
- X{array-like, sparse matrix} of shape (n_samples, n_features)
- The input samples. 
 
- Returns:
- yndarray of shape (n_samples,)
- The predicted values. 
 
 
 - score(X, y, sample_weight=None)[source]#
- Return coefficient of determination on test data. - The coefficient of determination, \(R^2\), is defined as \((1 - \frac{u}{v})\), where \(u\) is the residual sum of squares - ((y_true - y_pred)** 2).sum()and \(v\) is the total sum of squares- ((y_true - y_true.mean()) ** 2).sum(). The best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always predicts the expected value of- y, disregarding the input features, would get a \(R^2\) score of 0.0.- Parameters:
- Xarray-like of shape (n_samples, n_features)
- Test samples. For some estimators this may be a precomputed kernel matrix or a list of generic objects instead with shape - (n_samples, n_samples_fitted), where- n_samples_fittedis the number of samples used in the fitting for the estimator.
- yarray-like of shape (n_samples,) or (n_samples, n_outputs)
- True values for - X.
- sample_weightarray-like of shape (n_samples,), default=None
- Sample weights. 
 
- Returns:
- scorefloat
- \(R^2\) of - self.predict(X)w.r.t.- y.
 
 - Notes - The \(R^2\) score used when calling - scoreon a regressor uses- multioutput='uniform_average'from version 0.23 to keep consistent with default value of- r2_score. This influences the- scoremethod of all the multioutput regressors (except for- MultiOutputRegressor).
 - set_output(*, transform=None)[source]#
- Set output container. - See Introducing the set_output API for an example on how to use the API. - Parameters:
- transform{“default”, “pandas”, “polars”}, default=None
- Configure output of - transformand- fit_transform.- "default": Default output format of a transformer
- "pandas": DataFrame output
- "polars": Polars output
- None: Transform configuration is unchanged
 - Added in version 1.4: - "polars"option was added.
 
- Returns:
- selfestimator instance
- Estimator instance. 
 
 
 - set_params(**params)[source]#
- Set the parameters of an estimator from the ensemble. - Valid parameter keys can be listed with - get_params(). Note that you can directly set the parameters of the estimators contained in- estimators.- Parameters:
- **paramskeyword arguments
- Specific parameters using e.g. - set_params(parameter_name=new_value). In addition, to setting the parameters of the estimator, the individual estimator of the estimators can also be set, or can be removed by setting them to ‘drop’.
 
- Returns:
- selfobject
- Estimator instance. 
 
 
 - set_score_request(*, sample_weight: bool | None | str = '$UNCHANGED$') VotingRegressor[source]#
- Configure whether metadata should be requested to be passed to the - scoremethod.- Note that this method is only relevant when this estimator is used as a sub-estimator within a meta-estimator and metadata routing is enabled with - enable_metadata_routing=True(see- sklearn.set_config). Please check the User Guide on how the routing mechanism works.- The options for each parameter are: - True: metadata is requested, and passed to- scoreif provided. The request is ignored if metadata is not provided.
- False: metadata is not requested and the meta-estimator will not pass it to- score.
- None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.
- str: metadata should be passed to the meta-estimator with this given alias instead of the original name.
 - The default ( - sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows you to change the request for some parameters and not others.- Added in version 1.3. - Parameters:
- sample_weightstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
- Metadata routing for - sample_weightparameter in- score.
 
- Returns:
- selfobject
- The updated object. 
 
 
 
 
    