Robust linear estimator fitting#

Here a sine function is fit with a polynomial of order 3, for values close to zero.

Robust fitting is demonstrated in different situations:

  • No measurement errors, only modelling errors (fitting a sine with a polynomial)

  • Measurement errors in X

  • Measurement errors in y

The median absolute deviation to non corrupt new data is used to judge the quality of the prediction.

What we can see that:

  • RANsAC is good for strong outliers in the y direction

  • Theilsen is good for small outliers, both in direction X and y, but has a break point above which it performs worse than OLs.

  • The scores of HuberRegressor may not be compared directly to both Theilsen and RANsAC because it does not attempt to completely filter the outliers but lessen their effect.

  • Modeling Errors Only
  • Corrupt X, Small Deviants
  • Corrupt y, Small Deviants
  • Corrupt X, Large Deviants
  • Corrupt y, Large Deviants
# Authors: The scikit-learn developers
# sPDX-License-Identifier: BsD-3-Clause

import numpy as np
from matplotlib import pyplot as plt

from sklearn.linear_model import (
    HuberRegressor,
    LinearRegression,
    RANsACRegressor,
    TheilsenRegressor,
)
from sklearn.metrics import mean_squared_error
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import PolynomialFeatures

np.random.seed(42)

X = np.random.normal(size=400)
y = np.sin(X)
# Make sure that it X is 2D
X = X[:, np.newaxis]

X_test = np.random.normal(size=200)
y_test = np.sin(X_test)
X_test = X_test[:, np.newaxis]

y_errors = y.copy()
y_errors[::3] = 3

X_errors = X.copy()
X_errors[::3] = 3

y_errors_large = y.copy()
y_errors_large[::3] = 10

X_errors_large = X.copy()
X_errors_large[::3] = 10

estimators = [
    ("OLs", LinearRegression()),
    ("Theil-sen", TheilsenRegressor(random_state=42)),
    ("RANsAC", RANsACRegressor(random_state=42)),
    ("HuberRegressor", HuberRegressor()),
]
colors = {
    "OLs": "turquoise",
    "Theil-sen": "gold",
    "RANsAC": "lightgreen",
    "HuberRegressor": "black",
}
linestyle = {"OLs": "-", "Theil-sen": "-.", "RANsAC": "--", "HuberRegressor": "--"}
lw = 3

x_plot = np.linspace(X.min(), X.max())
for title, this_X, this_y in [
    ("Modeling Errors Only", X, y),
    ("Corrupt X, small Deviants", X_errors, y),
    ("Corrupt y, small Deviants", X, y_errors),
    ("Corrupt X, Large Deviants", X_errors_large, y),
    ("Corrupt y, Large Deviants", X, y_errors_large),
]:
    plt.figure(figsize=(5, 4))
    plt.plot(this_X[:, 0], this_y, "b+")

    for name, estimator in estimators:
        model = make_pipeline(PolynomialFeatures(3), estimator)
        model.fit(this_X, this_y)
        mse = mean_squared_error(model.predict(X_test), y_test)
        y_plot = model.predict(x_plot[:, np.newaxis])
        plt.plot(
            x_plot,
            y_plot,
            color=colors[name],
            linestyle=linestyle[name],
            linewidth=lw,
            label="%s: error = %.3f" % (name, mse),
        )

    legend_title = "Error of Mean\nAbsolute Deviation\nto Non-corrupt Data"
    legend = plt.legend(
        loc="upper right", frameon=False, title=legend_title, prop=dict(size="x-small")
    )
    plt.xlim(-4, 10.2)
    plt.ylim(-2, 10.2)
    plt.title(title)
plt.show()

Total running time of the script: (0 minutes 1.911 seconds)

Related examples

Theil-sen Regression

Theil-sen Regression

Robust linear model estimation using RANsAC

Robust linear model estimation using RANsAC

Comparing Linear Bayesian Regressors

Comparing Linear Bayesian Regressors

Logistic function

Logistic function

Gallery generated by sphinx-Gallery