MissingIndicator#
- class sklearn.impute.MissingIndicator(*, missing_values=nan, features='missing-only', sparse='auto', error_on_new=True)[source]#
Binary indicators for missing values.
Note that this component typically should not be used in a vanilla
Pipeline
consisting of transformers and a classifier, but rather could be added using aFeatureUnion
orColumnTransformer
.Read more in the User Guide.
Added in version 0.20.
- Parameters:
- missing_valuesint, float, str, np.nan or None, default=np.nan
The placeholder for the missing values. All occurrences of
missing_values
will be imputed. For pandas’ dataframes with nullable integer dtypes with missing values,missing_values
should be set tonp.nan
, sincepd.NA
will be converted tonp.nan
.- features{‘missing-only’, ‘all’}, default=’missing-only’
Whether the imputer mask should represent all or a subset of features.
If
'missing-only'
(default), the imputer mask will only represent features containing missing values during fit time.If
'all'
, the imputer mask will represent all features.
- sparsebool or ‘auto’, default=’auto’
Whether the imputer mask format should be sparse or dense.
If
'auto'
(default), the imputer mask will be of same type as input.If
True
, the imputer mask will be a sparse matrix.If
False
, the imputer mask will be a numpy array.
- error_on_newbool, default=True
If
True
,transform
will raise an error when there are features with missing values that have no missing values infit
. This is applicable only whenfeatures='missing-only'
.
- Attributes:
- features_ndarray of shape (n_missing_features,) or (n_features,)
The features indices which will be returned when calling
transform
. They are computed duringfit
. Iffeatures='all'
,features_
is equal torange(n_features)
.- n_features_in_int
Number of features seen during fit.
Added in version 0.24.
- feature_names_in_ndarray of shape (
n_features_in_
,) Names of features seen during fit. Defined only when
X
has feature names that are all strings.Added in version 1.0.
see also
simpleImputer
Univariate imputation of missing values.
IterativeImputer
Multivariate imputation of missing values.
Examples
>>> import numpy as np >>> from sklearn.impute import MissingIndicator >>> X1 = np.array([[np.nan, 1, 3], ... [4, 0, np.nan], ... [8, 1, 0]]) >>> X2 = np.array([[5, 1, np.nan], ... [np.nan, 2, 3], ... [2, 4, 0]]) >>> indicator = MissingIndicator() >>> indicator.fit(X1) MissingIndicator() >>> X2_tr = indicator.transform(X2) >>> X2_tr array([[False, True], [ True, False], [False, False]])
- fit(X, y=None)[source]#
Fit the transformer on
X
.- Parameters:
- X{array-like, sparse matrix} of shape (n_samples, n_features)
Input data, where
n_samples
is the number of samples andn_features
is the number of features.- yIgnored
Not used, present for API consistency by convention.
- Returns:
- selfobject
Fitted estimator.
- fit_transform(X, y=None)[source]#
Generate missing values indicator for
X
.- Parameters:
- X{array-like, sparse matrix} of shape (n_samples, n_features)
The input data to complete.
- yIgnored
Not used, present for API consistency by convention.
- Returns:
- Xt{ndarray, sparse matrix} of shape (n_samples, n_features) or (n_samples, n_features_with_missing)
The missing indicator for input data. The data type of
Xt
will be boolean.
- get_feature_names_out(input_features=None)[source]#
Get output feature names for transformation.
- Parameters:
- input_featuresarray-like of str or None, default=None
Input features.
If
input_features
isNone
, thenfeature_names_in_
is used as feature names in. Iffeature_names_in_
is not defined, then the following input feature names are generated:["x0", "x1", ..., "x(n_features_in_ - 1)"]
.If
input_features
is an array-like, theninput_features
must matchfeature_names_in_
iffeature_names_in_
is defined.
- Returns:
- feature_names_outndarray of str objects
Transformed feature names.
- get_metadata_routing()[source]#
Get metadata routing of this object.
Please check User Guide on how the routing mechanism works.
- Returns:
- routingMetadataRequest
A
MetadataRequest
encapsulating routing information.
- get_params(deep=True)[source]#
Get parameters for this estimator.
- Parameters:
- deepbool, default=True
If True, will return the parameters for this estimator and contained subobjects that are estimators.
- Returns:
- paramsdict
Parameter names mapped to their values.
- set_output(*, transform=None)[source]#
set output container.
see Introducing the set_output API for an example on how to use the API.
- Parameters:
- transform{“default”, “pandas”, “polars”}, default=None
Configure output of
transform
andfit_transform
."default"
: Default output format of a transformer"pandas"
: DataFrame output"polars"
: Polars outputNone
: Transform configuration is unchanged
Added in version 1.4:
"polars"
option was added.
- Returns:
- selfestimator instance
Estimator instance.
- set_params(**params)[source]#
set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as
Pipeline
). The latter have parameters of the form<component>__<parameter>
so that it’s possible to update each component of a nested object.- Parameters:
- **paramsdict
Estimator parameters.
- Returns:
- selfestimator instance
Estimator instance.
- transform(X)[source]#
Generate missing values indicator for
X
.- Parameters:
- X{array-like, sparse matrix} of shape (n_samples, n_features)
The input data to complete.
- Returns:
- Xt{ndarray, sparse matrix} of shape (n_samples, n_features) or (n_samples, n_features_with_missing)
The missing indicator for input data. The data type of
Xt
will be boolean.