This is a cache of https://scikit-learn.org/stable/dispatching.html. It is a snapshot of the page at 2025-05-09T01:16:01.224+0000.
<strong>11</strong>. Dispatching — scikit-learn 1.6.1 documentation
Skip to main content
Ctrl+K
scikit-learn homepage scikit-learn homepage
  • Install
  • User Guide
  • API
  • Examples
  • Community
    • Getting Started
    • Release History
    • Glossary
    • Development
    • FAQ
    • Support
    • Related Projects
    • Roadmap
    • Governance
    • About us
  • GitHub
  • Install
  • User Guide
  • API
  • Examples
  • Community
  • Getting Started
  • Release History
  • Glossary
  • Development
  • FAQ
  • Support
  • Related Projects
  • Roadmap
  • Governance
  • About us
  • GitHub

Section Navigation

  • 1. Supervised learning
    • 1.1. Linear Models
    • 1.2. Linear and Quadratic Discriminant Analysis
    • 1.3. Kernel ridge regression
    • 1.4. Support Vector Machines
    • 1.5. Stochastic Gradient Descent
    • 1.6. Nearest Neighbors
    • 1.7. Gaussian Processes
    • 1.8. Cross decomposition
    • 1.9. Naive Bayes
    • 1.10. Decision Trees
    • 1.11. Ensembles: Gradient boosting, random forests, bagging, voting, stacking
    • 1.12. Multiclass and multioutput algorithms
    • 1.13. Feature selection
    • 1.14. Semi-supervised learning
    • 1.15. Isotonic regression
    • 1.16. Probability calibration
    • 1.17. Neural network models (supervised)
  • 2. Unsupervised learning
    • 2.1. Gaussian mixture models
    • 2.2. Manifold learning
    • 2.3. Clustering
    • 2.4. Biclustering
    • 2.5. Decomposing signals in components (matrix factorization problems)
    • 2.6. Covariance estimation
    • 2.7. Novelty and Outlier Detection
    • 2.8. Density Estimation
    • 2.9. Neural network models (unsupervised)
  • 3. Model selection and evaluation
    • 3.1. Cross-validation: evaluating estimator performance
    • 3.2. Tuning the hyper-parameters of an estimator
    • 3.3. Tuning the decision threshold for class prediction
    • 3.4. Metrics and scoring: quantifying the quality of predictions
    • 3.5. Validation curves: plotting scores to evaluate models
  • 4. Inspection
    • 4.1. Partial Dependence and Individual Conditional Expectation plots
    • 4.2. Permutation feature importance
  • 5. Visualizations
  • 6. Dataset transformations
    • 6.1. Pipelines and composite estimators
    • 6.2. Feature extraction
    • 6.3. Preprocessing data
    • 6.4. Imputation of missing values
    • 6.5. Unsupervised dimensionality reduction
    • 6.6. Random Projection
    • 6.7. Kernel Approximation
    • 6.8. Pairwise metrics, Affinities and Kernels
    • 6.9. Transforming the prediction target (y)
  • 7. Dataset loading utilities
    • 7.1. Toy datasets
    • 7.2. Real world datasets
    • 7.3. Generated datasets
    • 7.4. Loading other datasets
  • 8. Computing with scikit-learn
    • 8.1. Strategies to scale computationally: bigger data
    • 8.2. Computational Performance
    • 8.3. Parallelism, resource management, and configuration
  • 9. Model persistence
  • 10. Common pitfalls and recommended practices
  • 11. Dispatching
    • 11.1. Array API support (experimental)
  • 12. Choosing the right estimator
  • 13. External Resources, Videos and Talks
  • User Guide
  • 11. Dispatching

11. Dispatching#

  • 11.1. Array API support (experimental)
    • 11.1.1. Example usage
    • 11.1.2. Support for Array API-compatible inputs
    • 11.1.3. Common estimator checks

previous

10. Common pitfalls and recommended practices

next

11.1. Array API support (experimental)

This Page

  • Show Source

© Copyright 2007 - 2025, scikit-learn developers (BSD License).