SpectralCoclustering#
- class sklearn.cluster.SpectralCoclustering(n_clusters=3, *, svd_method='randomized', n_svd_vecs=None, mini_batch=False, init='k-means++', n_init=10, random_state=None)[source]#
Spectral Co-Clustering algorithm (Dhillon, 2001).
Clusters rows and columns of an array
X
to solve the relaxed normalized cut of the bipartite graph created fromX
as follows: the edge between row vertexi
and column vertexj
has weightX[i, j]
.The resulting bicluster structure is block-diagonal, since each row and each column belongs to exactly one bicluster.
Supports sparse matrices, as long as they are nonnegative.
Read more in the User Guide.
- Parameters:
- n_clustersint, default=3
The number of biclusters to find.
- svd_method{‘randomized’, ‘arpack’}, default=’randomized’
Selects the algorithm for finding singular vectors. May be ‘randomized’ or ‘arpack’. If ‘randomized’, use
sklearn.utils.extmath.randomized_svd
, which may be faster for large matrices. If ‘arpack’, usescipy.sparse.linalg.svds
, which is more accurate, but possibly slower in some cases.- n_svd_vecsint, default=None
Number of vectors to use in calculating the SVD. Corresponds to
ncv
whensvd_method=arpack
andn_oversamples
whensvd_method
is ‘randomized`.- mini_batchbool, default=False
Whether to use mini-batch k-means, which is faster but may get different results.
- init{‘k-means++’, ‘random’}, or ndarray of shape (n_clusters, n_features), default=’k-means++’
Method for initialization of k-means algorithm; defaults to ‘k-means++’.
- n_initint, default=10
Number of random initializations that are tried with the k-means algorithm.
If mini-batch k-means is used, the best initialization is chosen and the algorithm runs once. Otherwise, the algorithm is run for each initialization and the best solution chosen.
- random_stateint, RandomState instance, default=None
Used for randomizing the singular value decomposition and the k-means initialization. Use an int to make the randomness deterministic. See Glossary.
- Attributes:
- rows_array-like of shape (n_row_clusters, n_rows)
Results of the clustering.
rows[i, r]
is True if clusteri
contains rowr
. Available only after callingfit
.- columns_array-like of shape (n_column_clusters, n_columns)
Results of the clustering, like
rows
.- row_labels_array-like of shape (n_rows,)
The bicluster label of each row.
- column_labels_array-like of shape (n_cols,)
The bicluster label of each column.
biclusters_
tuple of two ndarraysConvenient way to get row and column indicators together.
- n_features_in_int
Number of features seen during fit.
Added in version 0.24.
- feature_names_in_ndarray of shape (
n_features_in_
,) Names of features seen during fit. Defined only when
X
has feature names that are all strings.Added in version 1.0.
See also
SpectralBiclustering
Partitions rows and columns under the assumption that the data has an underlying checkerboard structure.
References
Examples
>>> from sklearn.cluster import SpectralCoclustering >>> import numpy as np >>> X = np.array([[1, 1], [2, 1], [1, 0], ... [4, 7], [3, 5], [3, 6]]) >>> clustering = SpectralCoclustering(n_clusters=2, random_state=0).fit(X) >>> clustering.row_labels_ array([0, 1, 1, 0, 0, 0], dtype=int32) >>> clustering.column_labels_ array([0, 0], dtype=int32) >>> clustering SpectralCoclustering(n_clusters=2, random_state=0)
- property biclusters_#
Convenient way to get row and column indicators together.
Returns the
rows_
andcolumns_
members.
- fit(X, y=None)[source]#
Create a biclustering for X.
- Parameters:
- Xarray-like of shape (n_samples, n_features)
Training data.
- yIgnored
Not used, present for API consistency by convention.
- Returns:
- selfobject
SpectralBiclustering instance.
- get_indices(i)[source]#
Row and column indices of the
i
’th bicluster.Only works if
rows_
andcolumns_
attributes exist.- Parameters:
- iint
The index of the cluster.
- Returns:
- row_indndarray, dtype=np.intp
Indices of rows in the dataset that belong to the bicluster.
- col_indndarray, dtype=np.intp
Indices of columns in the dataset that belong to the bicluster.
- get_metadata_routing()[source]#
Get metadata routing of this object.
Please check User Guide on how the routing mechanism works.
- Returns:
- routingMetadataRequest
A
MetadataRequest
encapsulating routing information.
- get_params(deep=True)[source]#
Get parameters for this estimator.
- Parameters:
- deepbool, default=True
If True, will return the parameters for this estimator and contained subobjects that are estimators.
- Returns:
- paramsdict
Parameter names mapped to their values.
- get_shape(i)[source]#
Shape of the
i
’th bicluster.- Parameters:
- iint
The index of the cluster.
- Returns:
- n_rowsint
Number of rows in the bicluster.
- n_colsint
Number of columns in the bicluster.
- get_submatrix(i, data)[source]#
Return the submatrix corresponding to bicluster
i
.- Parameters:
- iint
The index of the cluster.
- dataarray-like of shape (n_samples, n_features)
The data.
- Returns:
- submatrixndarray of shape (n_rows, n_cols)
The submatrix corresponding to bicluster
i
.
Notes
Works with sparse matrices. Only works if
rows_
andcolumns_
attributes exist.
- set_params(**params)[source]#
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as
Pipeline
). The latter have parameters of the form<component>__<parameter>
so that it’s possible to update each component of a nested object.- Parameters:
- **paramsdict
Estimator parameters.
- Returns:
- selfestimator instance
Estimator instance.
Gallery examples#
A demo of the Spectral Co-Clustering algorithm
Biclustering documents with the Spectral Co-clustering algorithm