MultiOutputRegressor#
- class sklearn.multioutput.MultiOutputRegressor(estimator, *, n_jobs=None)[source]#
- Multi target regression. - This strategy consists of fitting one regressor per target. This is a simple strategy for extending regressors that do not natively support multi-target regression. - Added in version 0.18. - Parameters:
- estimatorestimator object
- n_jobsint or None, optional (default=None)
- The number of jobs to run in parallel. - fit,- predictand- partial_fit(if supported by the passed estimator) will be parallelized for each target.- When individual estimators are fast to train or predict, using - n_jobs > 1can result in slower performance due to the parallelism overhead.- Nonemeans- 1unless in a- joblib.parallel_backendcontext.- -1means using all available processes / threads. See Glossary for more details.- Changed in version 0.20: - n_jobsdefault changed from- 1to- None.
 
- Attributes:
- estimators_list of n_outputestimators
- Estimators used for predictions. 
- n_features_in_int
- Number of features seen during fit. Only defined if the underlying - estimatorexposes such an attribute when fit.- Added in version 0.24. 
- feature_names_in_ndarray of shape (n_features_in_,)
- Names of features seen during fit. Only defined if the underlying estimators expose such an attribute when fit. - Added in version 1.0. 
 
- estimators_list of 
 - See also - RegressorChain
- A multi-label model that arranges regressions into a chain. 
- MultiOutputClassifier
- Classifies each output independently rather than chaining. 
 - Examples - >>> import numpy as np >>> from sklearn.datasets import load_linnerud >>> from sklearn.multioutput import MultiOutputRegressor >>> from sklearn.linear_model import Ridge >>> X, y = load_linnerud(return_X_y=True) >>> regr = MultiOutputRegressor(Ridge(random_state=123)).fit(X, y) >>> regr.predict(X[[0]]) array([[176, 35.1, 57.1]]) - fit(X, y, sample_weight=None, **fit_params)[source]#
- Fit the model to data, separately for each output variable. - Parameters:
- X{array-like, sparse matrix} of shape (n_samples, n_features)
- The input data. 
- y{array-like, sparse matrix} of shape (n_samples, n_outputs)
- Multi-output targets. An indicator matrix turns on multilabel estimation. 
- sample_weightarray-like of shape (n_samples,), default=None
- Sample weights. If - None, then samples are equally weighted. Only supported if the underlying regressor supports sample weights.
- **fit_paramsdict of string -> object
- Parameters passed to the - estimator.fitmethod of each step.- Added in version 0.23. 
 
- Returns:
- selfobject
- Returns a fitted instance. 
 
 
 - get_metadata_routing()[source]#
- Get metadata routing of this object. - Please check User Guide on how the routing mechanism works. - Added in version 1.3. - Returns:
- routingMetadataRouter
- A - MetadataRouterencapsulating routing information.
 
 
 - get_params(deep=True)[source]#
- Get parameters for this estimator. - Parameters:
- deepbool, default=True
- If True, will return the parameters for this estimator and contained subobjects that are estimators. 
 
- Returns:
- paramsdict
- Parameter names mapped to their values. 
 
 
 - partial_fit(X, y, sample_weight=None, **partial_fit_params)[source]#
- Incrementally fit the model to data, for each output variable. - Parameters:
- X{array-like, sparse matrix} of shape (n_samples, n_features)
- The input data. 
- y{array-like, sparse matrix} of shape (n_samples, n_outputs)
- Multi-output targets. 
- sample_weightarray-like of shape (n_samples,), default=None
- Sample weights. If - None, then samples are equally weighted. Only supported if the underlying regressor supports sample weights.
- **partial_fit_paramsdict of str -> object
- Parameters passed to the - estimator.partial_fitmethod of each sub-estimator.- Only available if - enable_metadata_routing=True. See the User Guide.- Added in version 1.3. 
 
- Returns:
- selfobject
- Returns a fitted instance. 
 
 
 - predict(X)[source]#
- Predict multi-output variable using model for each target variable. - Parameters:
- X{array-like, sparse matrix} of shape (n_samples, n_features)
- The input data. 
 
- Returns:
- y{array-like, sparse matrix} of shape (n_samples, n_outputs)
- Multi-output targets predicted across multiple predictors. Note: Separate models are generated for each predictor. 
 
 
 - score(X, y, sample_weight=None)[source]#
- Return coefficient of determination on test data. - The coefficient of determination, \(R^2\), is defined as \((1 - \frac{u}{v})\), where \(u\) is the residual sum of squares - ((y_true - y_pred)** 2).sum()and \(v\) is the total sum of squares- ((y_true - y_true.mean()) ** 2).sum(). The best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always predicts the expected value of- y, disregarding the input features, would get a \(R^2\) score of 0.0.- Parameters:
- Xarray-like of shape (n_samples, n_features)
- Test samples. For some estimators this may be a precomputed kernel matrix or a list of generic objects instead with shape - (n_samples, n_samples_fitted), where- n_samples_fittedis the number of samples used in the fitting for the estimator.
- yarray-like of shape (n_samples,) or (n_samples, n_outputs)
- True values for - X.
- sample_weightarray-like of shape (n_samples,), default=None
- Sample weights. 
 
- Returns:
- scorefloat
- \(R^2\) of - self.predict(X)w.r.t.- y.
 
 - Notes - The \(R^2\) score used when calling - scoreon a regressor uses- multioutput='uniform_average'from version 0.23 to keep consistent with default value of- r2_score. This influences the- scoremethod of all the multioutput regressors (except for- MultiOutputRegressor).
 - set_fit_request(*, sample_weight: bool | None | str = '$UNCHANGED$') MultiOutputRegressor[source]#
- Configure whether metadata should be requested to be passed to the - fitmethod.- Note that this method is only relevant when this estimator is used as a sub-estimator within a meta-estimator and metadata routing is enabled with - enable_metadata_routing=True(see- sklearn.set_config). Please check the User Guide on how the routing mechanism works.- The options for each parameter are: - True: metadata is requested, and passed to- fitif provided. The request is ignored if metadata is not provided.
- False: metadata is not requested and the meta-estimator will not pass it to- fit.
- None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.
- str: metadata should be passed to the meta-estimator with this given alias instead of the original name.
 - The default ( - sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows you to change the request for some parameters and not others.- Added in version 1.3. - Parameters:
- sample_weightstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
- Metadata routing for - sample_weightparameter in- fit.
 
- Returns:
- selfobject
- The updated object. 
 
 
 - set_params(**params)[source]#
- Set the parameters of this estimator. - The method works on simple estimators as well as on nested objects (such as - Pipeline). The latter have parameters of the form- <component>__<parameter>so that it’s possible to update each component of a nested object.- Parameters:
- **paramsdict
- Estimator parameters. 
 
- Returns:
- selfestimator instance
- Estimator instance. 
 
 
 - set_partial_fit_request(*, sample_weight: bool | None | str = '$UNCHANGED$') MultiOutputRegressor[source]#
- Configure whether metadata should be requested to be passed to the - partial_fitmethod.- Note that this method is only relevant when this estimator is used as a sub-estimator within a meta-estimator and metadata routing is enabled with - enable_metadata_routing=True(see- sklearn.set_config). Please check the User Guide on how the routing mechanism works.- The options for each parameter are: - True: metadata is requested, and passed to- partial_fitif provided. The request is ignored if metadata is not provided.
- False: metadata is not requested and the meta-estimator will not pass it to- partial_fit.
- None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.
- str: metadata should be passed to the meta-estimator with this given alias instead of the original name.
 - The default ( - sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows you to change the request for some parameters and not others.- Added in version 1.3. - Parameters:
- sample_weightstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
- Metadata routing for - sample_weightparameter in- partial_fit.
 
- Returns:
- selfobject
- The updated object. 
 
 
 - set_score_request(*, sample_weight: bool | None | str = '$UNCHANGED$') MultiOutputRegressor[source]#
- Configure whether metadata should be requested to be passed to the - scoremethod.- Note that this method is only relevant when this estimator is used as a sub-estimator within a meta-estimator and metadata routing is enabled with - enable_metadata_routing=True(see- sklearn.set_config). Please check the User Guide on how the routing mechanism works.- The options for each parameter are: - True: metadata is requested, and passed to- scoreif provided. The request is ignored if metadata is not provided.
- False: metadata is not requested and the meta-estimator will not pass it to- score.
- None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.
- str: metadata should be passed to the meta-estimator with this given alias instead of the original name.
 - The default ( - sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows you to change the request for some parameters and not others.- Added in version 1.3. - Parameters:
- sample_weightstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
- Metadata routing for - sample_weightparameter in- score.
 
- Returns:
- selfobject
- The updated object. 
 
 
 
Gallery examples#
 
Comparing random forests and the multi-output meta estimator
