OutputCodeClassifier#
- class sklearn.multiclass.OutputCodeClassifier(estimator, *, code_size=1.5, random_state=None, n_jobs=None)[source]#
(Error-Correcting) Output-Code multiclass strategy.
Output-code based strategies consist in representing each class with a binary code (an array of 0s and 1s). At fitting time, one binary classifier per bit in the code book is fitted. At prediction time, the classifiers are used to project new points in the class space and the class closest to the points is chosen. The main advantage of these strategies is that the number of classifiers used can be controlled by the user, either for compressing the model (0 <
code_size
< 1) or for making the model more robust to errors (code_size
> 1). See the documentation for more details.Read more in the User Guide.
- Parameters:
- estimatorestimator object
An estimator object implementing fit and one of decision_function or predict_proba.
- code_sizefloat, default=1.5
Percentage of the number of classes to be used to create the code book. A number between 0 and 1 will require fewer classifiers than one-vs-the-rest. A number greater than 1 will require more classifiers than one-vs-the-rest.
- random_stateint, RandomState instance, default=None
The generator used to initialize the codebook. Pass an int for reproducible output across multiple function calls. See Glossary.
- n_jobsint, default=None
The number of jobs to use for the computation: the multiclass problems are computed in parallel.
None
means 1 unless in ajoblib.parallel_backend
context.-1
means using all processors. See Glossary for more details.
- Attributes:
- estimators_list of
int(n_classes * code_size)
estimators Estimators used for predictions.
- classes_ndarray of shape (n_classes,)
Array containing labels.
- code_book_ndarray of shape (n_classes,
len(estimators_)
) Binary array containing the code of each class.
- n_features_in_int
Number of features seen during fit. Only defined if the underlying estimator exposes such an attribute when fit.
Added in version 0.24.
- feature_names_in_ndarray of shape (
n_features_in_
,) Names of features seen during fit. Only defined if the underlying estimator exposes such an attribute when fit.
Added in version 1.0.
- estimators_list of
See also
OneVsRestClassifier
One-vs-all multiclass strategy.
OneVsOneClassifier
One-vs-one multiclass strategy.
References
[1]“Solving multiclass learning problems via error-correcting output codes”, Dietterich T., Bakiri G., Journal of Artificial Intelligence Research 2, 1995.
[2]“The error coding method and PICTs”, James G., Hastie T., Journal of Computational and Graphical statistics 7, 1998.
[3]“The Elements of Statistical Learning”, Hastie T., Tibshirani R., Friedman J., page 606 (second-edition) 2008.
Examples
>>> from sklearn.multiclass import OutputCodeClassifier >>> from sklearn.ensemble import RandomForestClassifier >>> from sklearn.datasets import make_classification >>> X, y = make_classification(n_samples=100, n_features=4, ... n_informative=2, n_redundant=0, ... random_state=0, shuffle=False) >>> clf = OutputCodeClassifier( ... estimator=RandomForestClassifier(random_state=0), ... random_state=0).fit(X, y) >>> clf.predict([[0, 0, 0, 0]]) array([1])
- fit(X, y, **fit_params)[source]#
Fit underlying estimators.
- Parameters:
- X{array-like, sparse matrix} of shape (n_samples, n_features)
Data.
- yarray-like of shape (n_samples,)
Multi-class targets.
- **fit_paramsdict
Parameters passed to the
estimator.fit
method of each sub-estimator.Added in version 1.4: Only available if
enable_metadata_routing=True
. See Metadata Routing User Guide for more details.
- Returns:
- selfobject
Returns a fitted instance of self.
- get_metadata_routing()[source]#
Get metadata routing of this object.
Please check User Guide on how the routing mechanism works.
Added in version 1.4.
- Returns:
- routingMetadataRouter
A
MetadataRouter
encapsulating routing information.
- get_params(deep=True)[source]#
Get parameters for this estimator.
- Parameters:
- deepbool, default=True
If True, will return the parameters for this estimator and contained subobjects that are estimators.
- Returns:
- paramsdict
Parameter names mapped to their values.
- predict(X)[source]#
Predict multi-class targets using underlying estimators.
- Parameters:
- X{array-like, sparse matrix} of shape (n_samples, n_features)
Data.
- Returns:
- yndarray of shape (n_samples,)
Predicted multi-class targets.
- score(X, y, sample_weight=None)[source]#
Return the mean accuracy on the given test data and labels.
In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each sample that each label set be correctly predicted.
- Parameters:
- Xarray-like of shape (n_samples, n_features)
Test samples.
- yarray-like of shape (n_samples,) or (n_samples, n_outputs)
True labels for
X
.- sample_weightarray-like of shape (n_samples,), default=None
Sample weights.
- Returns:
- scorefloat
Mean accuracy of
self.predict(X)
w.r.t.y
.
- set_params(**params)[source]#
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as
Pipeline
). The latter have parameters of the form<component>__<parameter>
so that it’s possible to update each component of a nested object.- Parameters:
- **paramsdict
Estimator parameters.
- Returns:
- selfestimator instance
Estimator instance.
- set_score_request(*, sample_weight: bool | None | str = '$UNCHANGED$') OutputCodeClassifier [source]#
Request metadata passed to the
score
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed toscore
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it toscore
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters:
- sample_weightstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
sample_weight
parameter inscore
.
- Returns:
- selfobject
The updated object.
Gallery examples#
Overview of multiclass training meta-estimators