MissingIndicator#
- class sklearn.impute.MissingIndicator(*, missing_values=nan, features='missing-only', sparse='auto', error_on_new=True)[source]#
Binary indicators for missing values.
Note that this component typically should not be used in a vanilla
Pipelineconsisting of transformers and a classifier, but rather could be added using aFeatureUnionorColumnTransformer.Read more in the User Guide.
Added in version 0.20.
- Parameters:
- missing_valuesint, float, str, np.nan or None, default=np.nan
The placeholder for the missing values. All occurrences of
missing_valueswill be imputed. For pandas’ dataframes with nullable integer dtypes with missing values,missing_valuesshould be set tonp.nan, sincepd.NAwill be converted tonp.nan.- features{‘missing-only’, ‘all’}, default=’missing-only’
Whether the imputer mask should represent all or a subset of features.
If
'missing-only'(default), the imputer mask will only represent features containing missing values during fit time.If
'all', the imputer mask will represent all features.
- sparsebool or ‘auto’, default=’auto’
Whether the imputer mask format should be sparse or dense.
If
'auto'(default), the imputer mask will be of same type as input.If
True, the imputer mask will be a sparse matrix.If
False, the imputer mask will be a numpy array.
- error_on_newbool, default=True
If
True,transformwill raise an error when there are features with missing values that have no missing values infit. This is applicable only whenfeatures='missing-only'.
- Attributes:
- features_ndarray of shape (n_missing_features,) or (n_features,)
The features indices which will be returned when calling
transform. They are computed duringfit. Iffeatures='all',features_is equal torange(n_features).- n_features_in_int
Number of features seen during fit.
Added in version 0.24.
- feature_names_in_ndarray of shape (
n_features_in_,) Names of features seen during fit. Defined only when
Xhas feature names that are all strings.Added in version 1.0.
See also
SimpleImputerUnivariate imputation of missing values.
IterativeImputerMultivariate imputation of missing values.
Examples
>>> import numpy as np >>> from sklearn.impute import MissingIndicator >>> X1 = np.array([[np.nan, 1, 3], ... [4, 0, np.nan], ... [8, 1, 0]]) >>> X2 = np.array([[5, 1, np.nan], ... [np.nan, 2, 3], ... [2, 4, 0]]) >>> indicator = MissingIndicator() >>> indicator.fit(X1) MissingIndicator() >>> X2_tr = indicator.transform(X2) >>> X2_tr array([[False, True], [ True, False], [False, False]])
- fit(X, y=None)[source]#
Fit the transformer on
X.- Parameters:
- X{array-like, sparse matrix} of shape (n_samples, n_features)
Input data, where
n_samplesis the number of samples andn_featuresis the number of features.- yIgnored
Not used, present for API consistency by convention.
- Returns:
- selfobject
Fitted estimator.
- fit_transform(X, y=None)[source]#
Generate missing values indicator for
X.- Parameters:
- X{array-like, sparse matrix} of shape (n_samples, n_features)
The input data to complete.
- yIgnored
Not used, present for API consistency by convention.
- Returns:
- Xt{ndarray, sparse matrix} of shape (n_samples, n_features) or (n_samples, n_features_with_missing)
The missing indicator for input data. The data type of
Xtwill be boolean.
- get_feature_names_out(input_features=None)[source]#
Get output feature names for transformation.
- Parameters:
- input_featuresarray-like of str or None, default=None
Input features.
If
input_featuresisNone, thenfeature_names_in_is used as feature names in. Iffeature_names_in_is not defined, then the following input feature names are generated:["x0", "x1", ..., "x(n_features_in_ - 1)"].If
input_featuresis an array-like, theninput_featuresmust matchfeature_names_in_iffeature_names_in_is defined.
- Returns:
- feature_names_outndarray of str objects
Transformed feature names.
- get_metadata_routing()[source]#
Get metadata routing of this object.
Please check User Guide on how the routing mechanism works.
- Returns:
- routingMetadataRequest
A
MetadataRequestencapsulating routing information.
- get_params(deep=True)[source]#
Get parameters for this estimator.
- Parameters:
- deepbool, default=True
If True, will return the parameters for this estimator and contained subobjects that are estimators.
- Returns:
- paramsdict
Parameter names mapped to their values.
- set_output(*, transform=None)[source]#
Set output container.
See Introducing the set_output API for an example on how to use the API.
- Parameters:
- transform{“default”, “pandas”, “polars”}, default=None
Configure output of
transformandfit_transform."default": Default output format of a transformer"pandas": DataFrame output"polars": Polars outputNone: Transform configuration is unchanged
Added in version 1.4:
"polars"option was added.
- Returns:
- selfestimator instance
Estimator instance.
- set_params(**params)[source]#
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as
Pipeline). The latter have parameters of the form<component>__<parameter>so that it’s possible to update each component of a nested object.- Parameters:
- **paramsdict
Estimator parameters.
- Returns:
- selfestimator instance
Estimator instance.
- transform(X)[source]#
Generate missing values indicator for
X.- Parameters:
- X{array-like, sparse matrix} of shape (n_samples, n_features)
The input data to complete.
- Returns:
- Xt{ndarray, sparse matrix} of shape (n_samples, n_features) or (n_samples, n_features_with_missing)
The missing indicator for input data. The data type of
Xtwill be boolean.