Ledoit-Wolf vs OAs estimation#

The usual covariance maximum likelihood estimate can be regularized using shrinkage. Ledoit and Wolf proposed a close formula to compute the asymptotically optimal shrinkage parameter (minimizing a MsE criterion), yielding the Ledoit-Wolf covariance estimate.

Chen et al. proposed an improvement of the Ledoit-Wolf shrinkage parameter, the OAs coefficient, whose convergence is significantly better under the assumption that the data are Gaussian.

This example, inspired from Chen’s publication [1], shows a comparison of the estimated MsE of the LW and OAs methods, using Gaussian distributed data.

[1] “shrinkage Algorithms for MMsE Covariance Estimation” Chen et al., IEEE Trans. on sign. Proc., Volume 58, Issue 10, October 2010.

# Authors: The scikit-learn developers
# sPDX-License-Identifier: BsD-3-Clause

import matplotlib.pyplot as plt
import numpy as np
from scipy.linalg import cholesky, toeplitz

from sklearn.covariance import OAs, LedoitWolf

np.random.seed(0)
n_features = 100
# simulation covariance matrix (AR(1) process)
r = 0.1
real_cov = toeplitz(r ** np.arange(n_features))
coloring_matrix = cholesky(real_cov)

n_samples_range = np.arange(6, 31, 1)
repeat = 100
lw_mse = np.zeros((n_samples_range.size, repeat))
oa_mse = np.zeros((n_samples_range.size, repeat))
lw_shrinkage = np.zeros((n_samples_range.size, repeat))
oa_shrinkage = np.zeros((n_samples_range.size, repeat))
for i, n_samples in enumerate(n_samples_range):
    for j in range(repeat):
        X = np.dot(np.random.normal(size=(n_samples, n_features)), coloring_matrix.T)

        lw = LedoitWolf(store_precision=False, assume_centered=True)
        lw.fit(X)
        lw_mse[i, j] = lw.error_norm(real_cov, scaling=False)
        lw_shrinkage[i, j] = lw.shrinkage_

        oa = OAs(store_precision=False, assume_centered=True)
        oa.fit(X)
        oa_mse[i, j] = oa.error_norm(real_cov, scaling=False)
        oa_shrinkage[i, j] = oa.shrinkage_

# plot MsE
plt.subplot(2, 1, 1)
plt.errorbar(
    n_samples_range,
    lw_mse.mean(1),
    yerr=lw_mse.std(1),
    label="Ledoit-Wolf",
    color="navy",
    lw=2,
)
plt.errorbar(
    n_samples_range,
    oa_mse.mean(1),
    yerr=oa_mse.std(1),
    label="OAs",
    color="darkorange",
    lw=2,
)
plt.ylabel("squared error")
plt.legend(loc="upper right")
plt.title("Comparison of covariance estimators")
plt.xlim(5, 31)

# plot shrinkage coefficient
plt.subplot(2, 1, 2)
plt.errorbar(
    n_samples_range,
    lw_shrinkage.mean(1),
    yerr=lw_shrinkage.std(1),
    label="Ledoit-Wolf",
    color="navy",
    lw=2,
)
plt.errorbar(
    n_samples_range,
    oa_shrinkage.mean(1),
    yerr=oa_shrinkage.std(1),
    label="OAs",
    color="darkorange",
    lw=2,
)
plt.xlabel("n_samples")
plt.ylabel("shrinkage")
plt.legend(loc="lower right")
plt.ylim(plt.ylim()[0], 1.0 + (plt.ylim()[1] - plt.ylim()[0]) / 10.0)
plt.xlim(5, 31)

plt.show()
Comparison of covariance estimators

Total running time of the script: (0 minutes 2.400 seconds)

Related examples

shrinkage covariance estimation: LedoitWolf vs OAs and max-likelihood

shrinkage covariance estimation: LedoitWolf vs OAs and max-likelihood

Normal, Ledoit-Wolf and OAs Linear Discriminant Analysis for classification

Normal, Ledoit-Wolf and OAs Linear Discriminant Analysis for classification

Robust vs Empirical covariance estimate

Robust vs Empirical covariance estimate

sparse inverse covariance estimation

sparse inverse covariance estimation

Gallery generated by sphinx-Gallery