make_checkerboard#
- sklearn.datasets.make_checkerboard(shape, n_clusters, *, noise=0.0, minval=10, maxval=100, shuffle=True, random_state=None)[source]#
Generate an array with block checkerboard structure for biclustering.
Read more in the User Guide.
- Parameters:
- shapetuple of shape (n_rows, n_cols)
The shape of the result.
- n_clustersint or array-like or shape (n_row_clusters, n_column_clusters)
The number of row and column clusters.
- noisefloat, default=0.0
The standard deviation of the gaussian noise.
- minvalfloat, default=10
Minimum value of a bicluster.
- maxvalfloat, default=100
Maximum value of a bicluster.
- shufflebool, default=True
Shuffle the samples.
- random_stateint, RandomState instance or None, default=None
Determines random number generation for dataset creation. Pass an int for reproducible output across multiple function calls. See Glossary.
- Returns:
- Xndarray of shape
shape
The generated array.
- rowsndarray of shape (n_clusters, X.shape[0])
The indicators for cluster membership of each row.
- colsndarray of shape (n_clusters, X.shape[1])
The indicators for cluster membership of each column.
- Xndarray of shape
See also
make_biclusters
Generate an array with constant block diagonal structure for biclustering.
References
[1]Kluger, Y., Basri, R., Chang, J. T., & Gerstein, M. (2003). Spectral biclustering of microarray data: coclustering genes and conditions. Genome research, 13(4), 703-716.
Examples
>>> from sklearn.datasets import make_checkerboard >>> data, rows, columns = make_checkerboard(shape=(300, 300), n_clusters=10, ... random_state=42) >>> data.shape (300, 300) >>> rows.shape (100, 300) >>> columns.shape (100, 300) >>> print(rows[0][:5], columns[0][:5]) [False False False True False] [False False False False False]
Gallery examples#
A demo of the Spectral Biclustering algorithm