fetch_20newsgroups_vectorized#
- sklearn.datasets.fetch_20newsgroups_vectorized(*, subset='train', remove=(), data_home=None, download_if_missing=True, return_X_y=False, normalize=True, as_frame=False, n_retries=3, delay=1.0)[source]#
- Load and vectorize the 20 newsgroups dataset (classification). - Download it if necessary. - This is a convenience function; the transformation is done using the default settings for - CountVectorizer. For more advanced usage (stopword filtering, n-gram extraction, etc.), combine fetch_20newsgroups with a custom- CountVectorizer,- HashingVectorizer,- TfidfTransformeror- TfidfVectorizer.- The resulting counts are normalized using - sklearn.preprocessing.normalizeunless normalize is set to False.- Classes - 20 - Samples total - 18846 - Dimensionality - 130107 - Features - real - Read more in the User Guide. - Parameters:
- subset{‘train’, ‘test’, ‘all’}, default=’train’
- Select the dataset to load: ‘train’ for the training set, ‘test’ for the test set, ‘all’ for both, with shuffled ordering. 
- removetuple, default=()
- May contain any subset of (‘headers’, ‘footers’, ‘quotes’). Each of these are kinds of text that will be detected and removed from the newsgroup posts, preventing classifiers from overfitting on metadata. - ‘headers’ removes newsgroup headers, ‘footers’ removes blocks at the ends of posts that look like signatures, and ‘quotes’ removes lines that appear to be quoting another post. 
- data_homestr or path-like, default=None
- Specify an download and cache folder for the datasets. If None, all scikit-learn data is stored in ‘~/scikit_learn_data’ subfolders. 
- download_if_missingbool, default=True
- If False, raise an OSError if the data is not locally available instead of trying to download the data from the source site. 
- return_X_ybool, default=False
- If True, returns - (data.data, data.target)instead of a Bunch object.- Added in version 0.20. 
- normalizebool, default=True
- If True, normalizes each document’s feature vector to unit norm using - sklearn.preprocessing.normalize.- Added in version 0.22. 
- as_framebool, default=False
- If True, the data is a pandas DataFrame including columns with appropriate dtypes (numeric, string, or categorical). The target is a pandas DataFrame or Series depending on the number of - target_columns.- Added in version 0.24. 
- n_retriesint, default=3
- Number of retries when HTTP errors are encountered. - Added in version 1.5. 
- delayfloat, default=1.0
- Number of seconds between retries. - Added in version 1.5. 
 
- Returns:
- bunchBunch
- Dictionary-like object, with the following attributes. - data: {sparse matrix, dataframe} of shape (n_samples, n_features)
- The input data matrix. If - as_frameis- True,- datais a pandas DataFrame with sparse columns.
- target: {ndarray, series} of shape (n_samples,)
- The target labels. If - as_frameis- True,- targetis a pandas Series.
- target_names: list of shape (n_classes,)
- The names of target classes. 
- DESCR: str
- The full description of the dataset. 
- frame: dataframe of shape (n_samples, n_features + 1)
- Only present when - as_frame=True. Pandas DataFrame with- dataand- target.- Added in version 0.24. 
 
- (data, target)tuple if return_X_yis True
- dataand- targetwould be of the format defined in the- Bunchdescription above.- Added in version 0.20. 
 
- bunch
 - Examples - >>> from sklearn.datasets import fetch_20newsgroups_vectorized >>> newsgroups_vectorized = fetch_20newsgroups_vectorized(subset='test') >>> newsgroups_vectorized.data.shape (7532, 130107) >>> newsgroups_vectorized.target.shape (7532,) 
Gallery examples#
 
Multiclass sparse logistic regression on 20newgroups
 
The Johnson-Lindenstrauss bound for embedding with random projections
 
    