make_friedman1#
- sklearn.datasets.make_friedman1(n_samples=100, n_features=10, *, noise=0.0, random_state=None)[source]#
- Generate the “Friedman #1” regression problem. - This dataset is described in Friedman [1] and Breiman [2]. - Inputs - Xare independent features uniformly distributed on the interval [0, 1]. The output- yis created according to the formula:- y(X) = 10 * sin(pi * X[:, 0] * X[:, 1]) + 20 * (X[:, 2] - 0.5) ** 2 + 10 * X[:, 3] + 5 * X[:, 4] + noise * N(0, 1). - Out of the - n_featuresfeatures, only 5 are actually used to compute- y. The remaining features are independent of- y.- The number of features has to be >= 5. - Read more in the User Guide. - Parameters:
- n_samplesint, default=100
- The number of samples. 
- n_featuresint, default=10
- The number of features. Should be at least 5. 
- noisefloat, default=0.0
- The standard deviation of the gaussian noise applied to the output. 
- random_stateint, RandomState instance or None, default=None
- Determines random number generation for dataset noise. Pass an int for reproducible output across multiple function calls. See Glossary. 
 
- Returns:
- Xndarray of shape (n_samples, n_features)
- The input samples. 
- yndarray of shape (n_samples,)
- The output values. 
 
 - References [1]- J. Friedman, “Multivariate adaptive regression splines”, The Annals of Statistics 19 (1), pages 1-67, 1991. [2]- L. Breiman, “Bagging predictors”, Machine Learning 24, pages 123-140, 1996. - Examples - >>> from sklearn.datasets import make_friedman1 >>> X, y = make_friedman1(random_state=42) >>> X.shape (100, 10) >>> y.shape (100,) >>> list(y[:3]) [np.float64(16.8), np.float64(5.87), np.float64(9.46)] 
