kernel_metrics#
- sklearn.metrics.pairwise.kernel_metrics()[source]#
Valid metrics for pairwise_kernels.
This function simply returns the valid pairwise distance metrics. It exists, however, to allow for a verbose description of the mapping for each of the valid strings.
- The valid distance metrics, and the function they map to, are:
metric
Function
‘additive_chi2’
sklearn.pairwise.additive_chi2_kernel
‘chi2’
sklearn.pairwise.chi2_kernel
‘linear’
sklearn.pairwise.linear_kernel
‘poly’
sklearn.pairwise.polynomial_kernel
‘polynomial’
sklearn.pairwise.polynomial_kernel
‘rbf’
sklearn.pairwise.rbf_kernel
‘laplacian’
sklearn.pairwise.laplacian_kernel
‘sigmoid’
sklearn.pairwise.sigmoid_kernel
‘cosine’
sklearn.pairwise.cosine_similarity
Read more in the User Guide.
- Returns:
- kernel_metricsdict
Returns valid metrics for pairwise_kernels.