DotProduct#
- class sklearn.gaussian_process.kernels.DotProduct(sigma_0=1.0, sigma_0_bounds=(1e-05, 100000.0))[source]#
- Dot-Product kernel. - The DotProduct kernel is non-stationary and can be obtained from linear regression by putting \(N(0, 1)\) priors on the coefficients of \(x_d (d = 1, . . . , D)\) and a prior of \(N(0, \sigma_0^2)\) on the bias. The DotProduct kernel is invariant to a rotation of the coordinates about the origin, but not translations. It is parameterized by a parameter sigma_0 \(\sigma\) which controls the inhomogenity of the kernel. For \(\sigma_0^2 =0\), the kernel is called the homogeneous linear kernel, otherwise it is inhomogeneous. The kernel is given by \[k(x_i, x_j) = \sigma_0 ^ 2 + x_i \cdot x_j\]- The DotProduct kernel is commonly combined with exponentiation. - See [1], Chapter 4, Section 4.2, for further details regarding the DotProduct kernel. - Read more in the User Guide. - Added in version 0.18. - Parameters:
- sigma_0float >= 0, default=1.0
- Parameter controlling the inhomogenity of the kernel. If sigma_0=0, the kernel is homogeneous. 
- sigma_0_boundspair of floats >= 0 or “fixed”, default=(1e-5, 1e5)
- The lower and upper bound on ‘sigma_0’. If set to “fixed”, ‘sigma_0’ cannot be changed during hyperparameter tuning. 
 
 - References - Examples - >>> from sklearn.datasets import make_friedman2 >>> from sklearn.gaussian_process import GaussianProcessRegressor >>> from sklearn.gaussian_process.kernels import DotProduct, WhiteKernel >>> X, y = make_friedman2(n_samples=500, noise=0, random_state=0) >>> kernel = DotProduct() + WhiteKernel() >>> gpr = GaussianProcessRegressor(kernel=kernel, ... random_state=0).fit(X, y) >>> gpr.score(X, y) 0.3680 >>> gpr.predict(X[:2,:], return_std=True) (array([653.0, 592.1]), array([316.6, 316.6])) - __call__(X, Y=None, eval_gradient=False)[source]#
- Return the kernel k(X, Y) and optionally its gradient. - Parameters:
- Xndarray of shape (n_samples_X, n_features)
- Left argument of the returned kernel k(X, Y) 
- Yndarray of shape (n_samples_Y, n_features), default=None
- Right argument of the returned kernel k(X, Y). If None, k(X, X) if evaluated instead. 
- eval_gradientbool, default=False
- Determines whether the gradient with respect to the log of the kernel hyperparameter is computed. Only supported when Y is None. 
 
- Returns:
- Kndarray of shape (n_samples_X, n_samples_Y)
- Kernel k(X, Y) 
- K_gradientndarray of shape (n_samples_X, n_samples_X, n_dims), optional
- The gradient of the kernel k(X, X) with respect to the log of the hyperparameter of the kernel. Only returned when - eval_gradientis True.
 
 
 - property bounds#
- Returns the log-transformed bounds on the theta. - Returns:
- boundsndarray of shape (n_dims, 2)
- The log-transformed bounds on the kernel’s hyperparameters theta 
 
 
 - clone_with_theta(theta)[source]#
- Returns a clone of self with given hyperparameters theta. - Parameters:
- thetandarray of shape (n_dims,)
- The hyperparameters 
 
 
 - diag(X)[source]#
- Returns the diagonal of the kernel k(X, X). - The result of this method is identical to np.diag(self(X)); however, it can be evaluated more efficiently since only the diagonal is evaluated. - Parameters:
- Xndarray of shape (n_samples_X, n_features)
- Left argument of the returned kernel k(X, Y). 
 
- Returns:
- K_diagndarray of shape (n_samples_X,)
- Diagonal of kernel k(X, X). 
 
 
 - get_params(deep=True)[source]#
- Get parameters of this kernel. - Parameters:
- deepbool, default=True
- If True, will return the parameters for this estimator and contained subobjects that are estimators. 
 
- Returns:
- paramsdict
- Parameter names mapped to their values. 
 
 
 - property hyperparameters#
- Returns a list of all hyperparameter specifications. 
 - property n_dims#
- Returns the number of non-fixed hyperparameters of the kernel. 
 - property requires_vector_input#
- Returns whether the kernel is defined on fixed-length feature vectors or generic objects. Defaults to True for backward compatibility. 
 - set_params(**params)[source]#
- Set the parameters of this kernel. - The method works on simple kernels as well as on nested kernels. The latter have parameters of the form - <component>__<parameter>so that it’s possible to update each component of a nested object.- Returns:
- self
 
 
 - property theta#
- Returns the (flattened, log-transformed) non-fixed hyperparameters. - Note that theta are typically the log-transformed values of the kernel’s hyperparameters as this representation of the search space is more amenable for hyperparameter search, as hyperparameters like length-scales naturally live on a log-scale. - Returns:
- thetandarray of shape (n_dims,)
- The non-fixed, log-transformed hyperparameters of the kernel 
 
 
 
Gallery examples#
 
Iso-probability lines for Gaussian Processes classification (GPC)
 
Illustration of Gaussian process classification (GPC) on the XOR dataset
 
Illustration of prior and posterior Gaussian process for different kernels
