TheilSenRegressor#
- class sklearn.linear_model.TheilSenRegressor(*, fit_intercept=True, copy_X='deprecated', max_subpopulation=10000.0, n_subsamples=None, max_iter=300, tol=0.001, random_state=None, n_jobs=None, verbose=False)[source]#
- Theil-Sen Estimator: robust multivariate regression model. - The algorithm calculates least square solutions on subsets with size n_subsamples of the samples in X. Any value of n_subsamples between the number of features and samples leads to an estimator with a compromise between robustness and efficiency. Since the number of least square solutions is “n_samples choose n_subsamples”, it can be extremely large and can therefore be limited with max_subpopulation. If this limit is reached, the subsets are chosen randomly. In a final step, the spatial median (or L1 median) is calculated of all least square solutions. - Read more in the User Guide. - Parameters:
- fit_interceptbool, default=True
- Whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations. 
- copy_Xbool, default=True
- If True, X will be copied; else, it may be overwritten. - Deprecated since version 1.6: - copy_Xwas deprecated in 1.6 and will be removed in 1.8. It has no effect as a copy is always made.
- max_subpopulationint, default=1e4
- Instead of computing with a set of cardinality ‘n choose k’, where n is the number of samples and k is the number of subsamples (at least number of features), consider only a stochastic subpopulation of a given maximal size if ‘n choose k’ is larger than max_subpopulation. For other than small problem sizes this parameter will determine memory usage and runtime if n_subsamples is not changed. Note that the data type should be int but floats such as 1e4 can be accepted too. 
- n_subsamplesint, default=None
- Number of samples to calculate the parameters. This is at least the number of features (plus 1 if fit_intercept=True) and the number of samples as a maximum. A lower number leads to a higher breakdown point and a low efficiency while a high number leads to a low breakdown point and a high efficiency. If None, take the minimum number of subsamples leading to maximal robustness. If n_subsamples is set to n_samples, Theil-Sen is identical to least squares. 
- max_iterint, default=300
- Maximum number of iterations for the calculation of spatial median. 
- tolfloat, default=1e-3
- Tolerance when calculating spatial median. 
- random_stateint, RandomState instance or None, default=None
- A random number generator instance to define the state of the random permutations generator. Pass an int for reproducible output across multiple function calls. See Glossary. 
- n_jobsint, default=None
- Number of CPUs to use during the cross validation. - Nonemeans 1 unless in a- joblib.parallel_backendcontext.- -1means using all processors. See Glossary for more details.
- verbosebool, default=False
- Verbose mode when fitting the model. 
 
- Attributes:
- coef_ndarray of shape (n_features,)
- Coefficients of the regression model (median of distribution). 
- intercept_float
- Estimated intercept of regression model. 
- breakdown_float
- Approximated breakdown point. 
- n_iter_int
- Number of iterations needed for the spatial median. 
- n_subpopulation_int
- Number of combinations taken into account from ‘n choose k’, where n is the number of samples and k is the number of subsamples. 
- n_features_in_int
- Number of features seen during fit. - Added in version 0.24. 
- feature_names_in_ndarray of shape (n_features_in_,)
- Names of features seen during fit. Defined only when - Xhas feature names that are all strings.- Added in version 1.0. 
 
 - See also - HuberRegressor
- Linear regression model that is robust to outliers. 
- RANSACRegressor
- RANSAC (RANdom SAmple Consensus) algorithm. 
- SGDRegressor
- Fitted by minimizing a regularized empirical loss with SGD. 
 - References - Theil-Sen Estimators in a Multiple Linear Regression Model, 2009 Xin Dang, Hanxiang Peng, Xueqin Wang and Heping Zhang http://home.olemiss.edu/~xdang/papers/MTSE.pdf 
 - Examples - >>> from sklearn.linear_model import TheilSenRegressor >>> from sklearn.datasets import make_regression >>> X, y = make_regression( ... n_samples=200, n_features=2, noise=4.0, random_state=0) >>> reg = TheilSenRegressor(random_state=0).fit(X, y) >>> reg.score(X, y) 0.9884 >>> reg.predict(X[:1,]) array([-31.5871]) - fit(X, y)[source]#
- Fit linear model. - Parameters:
- Xndarray of shape (n_samples, n_features)
- Training data. 
- yndarray of shape (n_samples,)
- Target values. 
 
- Returns:
- selfreturns an instance of self.
- Fitted - TheilSenRegressorestimator.
 
 
 - get_metadata_routing()[source]#
- Get metadata routing of this object. - Please check User Guide on how the routing mechanism works. - Returns:
- routingMetadataRequest
- A - MetadataRequestencapsulating routing information.
 
 
 - get_params(deep=True)[source]#
- Get parameters for this estimator. - Parameters:
- deepbool, default=True
- If True, will return the parameters for this estimator and contained subobjects that are estimators. 
 
- Returns:
- paramsdict
- Parameter names mapped to their values. 
 
 
 - predict(X)[source]#
- Predict using the linear model. - Parameters:
- Xarray-like or sparse matrix, shape (n_samples, n_features)
- Samples. 
 
- Returns:
- Carray, shape (n_samples,)
- Returns predicted values. 
 
 
 - score(X, y, sample_weight=None)[source]#
- Return coefficient of determination on test data. - The coefficient of determination, \(R^2\), is defined as \((1 - \frac{u}{v})\), where \(u\) is the residual sum of squares - ((y_true - y_pred)** 2).sum()and \(v\) is the total sum of squares- ((y_true - y_true.mean()) ** 2).sum(). The best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always predicts the expected value of- y, disregarding the input features, would get a \(R^2\) score of 0.0.- Parameters:
- Xarray-like of shape (n_samples, n_features)
- Test samples. For some estimators this may be a precomputed kernel matrix or a list of generic objects instead with shape - (n_samples, n_samples_fitted), where- n_samples_fittedis the number of samples used in the fitting for the estimator.
- yarray-like of shape (n_samples,) or (n_samples, n_outputs)
- True values for - X.
- sample_weightarray-like of shape (n_samples,), default=None
- Sample weights. 
 
- Returns:
- scorefloat
- \(R^2\) of - self.predict(X)w.r.t.- y.
 
 - Notes - The \(R^2\) score used when calling - scoreon a regressor uses- multioutput='uniform_average'from version 0.23 to keep consistent with default value of- r2_score. This influences the- scoremethod of all the multioutput regressors (except for- MultiOutputRegressor).
 - set_params(**params)[source]#
- Set the parameters of this estimator. - The method works on simple estimators as well as on nested objects (such as - Pipeline). The latter have parameters of the form- <component>__<parameter>so that it’s possible to update each component of a nested object.- Parameters:
- **paramsdict
- Estimator parameters. 
 
- Returns:
- selfestimator instance
- Estimator instance. 
 
 
 - set_score_request(*, sample_weight: bool | None | str = '$UNCHANGED$') TheilSenRegressor[source]#
- Configure whether metadata should be requested to be passed to the - scoremethod.- Note that this method is only relevant when this estimator is used as a sub-estimator within a meta-estimator and metadata routing is enabled with - enable_metadata_routing=True(see- sklearn.set_config). Please check the User Guide on how the routing mechanism works.- The options for each parameter are: - True: metadata is requested, and passed to- scoreif provided. The request is ignored if metadata is not provided.
- False: metadata is not requested and the meta-estimator will not pass it to- score.
- None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.
- str: metadata should be passed to the meta-estimator with this given alias instead of the original name.
 - The default ( - sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows you to change the request for some parameters and not others.- Added in version 1.3. - Parameters:
- sample_weightstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
- Metadata routing for - sample_weightparameter in- score.
 
- Returns:
- selfobject
- The updated object. 
 
 
 
 
     
